309 research outputs found

    Cocaine- and amphetamine-regulated transcript (CART) peptide in the nerve fibres of the porcine gallbladder wall under physiological conditions and after Salmonella Enteritidis lipopolysaccharides administration

    Get PDF
    Background: Cocaine- and amphetamine-regulated transcript (CART) peptide is the substance distributed in various parts of the nervous system. The majority of previous studies described this substance in the brain, where it takes part in regulatory processes connected with the food intake. CART is also present in the peripheral nervous system, especially in the enteric neurons and nerves located in the wall of the stomach and intestine, but many aspects of distribution and functions of this peptide in the digestive organs remain unknown. The aim of the present study was to investigate the changes of CART-positive nerves in the porcine gallbladder after administration of low-dose Salmonella Enteritidis lipopolysaccharide (LPS) using the single immunofluorescence technique. Materials and methods: Seven days after the injection of 5 μg/kg b.w. LPS S. Enteritidis the gallbladders were collected. CART-positive nerves were studied with standard single immunofluorescence method and counted per observation field (0.1 m2). Results: In control animals the average number of CART-positive nerves per observation field (0.1 mm2) amounted to 5.38 ± 0.32, 11.11 ± 1.56 and 2.97 ± ± 0.24 in gallbladder neck, body and fundus, respectively. LPS administration caused the increase in the number of CART-positive fibres in all parts of gallbladder, and these values amounted to 12.74 ± 0.51, 19.75 ± 0.19 and 5.1 ± 0.05 in the gallbladder neck, body and fundus, respectively. Conclusions: The obtained results suggest that CART is involved in the neuronal regulatory processes in the porcine gallbladder under physiological conditions, but also during pathological processes, but exact functions of this peptide in this organ remain unexplained and require the further investigation

    Construction of an instant structured illumination microscope

    Get PDF
    A challenge in biological imaging is to capture high-resolution images at fast frame rates in live cells. The “instant structured illumination microscope” (iSIM) is a system designed for this purpose. Similarly to standard structured illumination microscopy (SIM), an iSIM provides a twofold improvement over widefield microscopy, in x, y and z, but also allows much faster image acquisition, with real-time display of super-resolution images. The assembly of an iSIM is reasonably complex, involving the combination and alignment of many optical components, including three micro-optics arrays (two lenslet arrays and an array of pinholes, all with a pitch of 222 μm) and a double-sided scanning mirror. In addition, a number of electronic components must be correctly controlled. Construction of the system is therefore not trivial, but is highly desirable, particularly for live-cell imaging. We report, and provide instructions for, the construction of an iSIM, including minor modifications to a previous design in both hardware and software. The final instrument allows us to rapidly acquire fluorescence images at rates faster than 100 fps, with approximately twofold improvement in resolution in both x-y and z; sub-diffractive biological features have an apparent size (full width at half maximum) of 145 nm (lateral) and 320 nm (axial), using a 1.49 NA objective and 488 nm excitation

    Structure of Cryptosporidium IMP de­hydrogenase bound to an inhibitor with in vivo antiparasitic activity

    Get PDF
    Inosine 50-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 50-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications

    Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer

    Get PDF
    Topoisomerase IIb binding protein 1 (TopBP1) is involved in cell survival, DNA replication, DNA damage repair and cell cycle checkpoint control. The biological function of TopBP1 and its close relation with BRCA1 prompted us to investigate whether alterations in the TopBP1 gene can influence the risk of breast cancer. The aim of this study was to examine the association between five polymorphisms (rs185903567, rs116645643, rs115160714, rs116195487, and rs112843513) located in the 30UTR region of the TopBP1 gene and breast cancer risk as well as allele-specific gene expression. Five hundred thirty-four breast cancer patients and 556 population controls were genotyped for these SNPs. Allele-specific Top- BP1 mRNA and protein expressions were determined by using real time PCR and western blotting methods, respectively. Only one SNP (rs115160714) showed an association with breast cancer. Compared to homozygous common allele carriers, heterozygous and homozygous for the T variant had significantly increased risk of breast cancer (adjusted odds ratio = 3.81, 95 % confidence interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and protein expression were higher in the individuals with the CT or TT genotype. There was a significant association between the rs115160714 and tumor grade and stage. Most carriers of minor allele had a high grade (G3) tumors classified as T2-T4N1M0. Our study raises a possibility that a genetic variation of TopBP1 may be implicated in the etiology of breast cancer

    Optimization of Benzoxazole-Based Inhibitors of Cryptosporidium parvum Inosine 5?-Monophosphate Dehydrogenase

    Get PDF
    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5?-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure–activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD+. The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 ?M) against a panel of four mammalian cells lines

    XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk

    Get PDF
    Human Papillomavirus (HPV) is the main cause of cervical cancer and its precursor lesions. Transformation may be induced by several mechanisms, including oncogene activation and genome instability. Individual differences in DNA damage recognition and repair have been hypothesized to influence cervical cancer risk. The aim of this study was to evaluate whether the double strand break gene polymorphisms XRCC2 R188H G>A (rs3218536), XRCC3 T241M C>T (rs861539) and R243H G>A (rs77381814) are associated to cervical cancer in Argentine women. A case control study consisting of 322 samples (205 cases and 117 controls) was carried out. HPV DNA detection was performed by PCR and genotyping of positive samples by EIA (enzyme immunoassay). XRCC2 and 3 polymorphisms were determined by pyrosequencing. The HPV-adjusted odds ratio (OR) of XRCC2 188 GG/AG genotypes was OR = 2.4 (CI = 1.1-4.9, p = 0.02) for cervical cancer. In contrast, there was no increased risk for cervical cancer with XRCC3 241 TT/CC genotypes (OR = 0.48; CI = 0.2-1; p = 0.1) or XRCC3 241 CT/CC (OR = 0.87; CI = 0.52-1.4; p = 0.6). Regarding XRCC3 R243H, the G allele was almost fixed in the population studied. In conclusion, although the sample size was modest, the present data indicate a statistical association between cervical cancer and XRCC2 R188H polymorphism. Future studies are needed to confirm these findings.Fil: Perez, Luis Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Crivaro, Andrea Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Barbisan, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Poleri, Lucía Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Golijow, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentin
    corecore