45 research outputs found

    Biefeld - Brown effect and space curvature of electromagnetic field

    Full text link
    With applying of new proposed electromagnetic gravity Lagrangian together with Einstein-Hilbert equation not zero space curvature was derived. The curvature gives "a priory" postulate of equivalence of mass and electromagnetic field gravity properties. The non zero trace of energy-stress tensor of electrical field changes space curvature of gravity mass, which yields to prediction of dependence of capacitor gravity mass from capacitor capacitance and voltage values, observed in Biefeld-Brown effect. The other, not observed prediction could be applied to coil gravity mass dependence from coil inductance and current values. New physical constant, electromagnetic field gravity constant, was introduced to conform with theoretical and experimental data.Comment: 9 page

    High-low Strategy of Portfolio Composition using Evolino RNN Ensembles

    Get PDF
    trategy of investment is important tool enabling better investor's decisions in uncertain finance market. Rules of portfolio selection help investors balance accepting some risk for the expectation of higher returns. The aim of the research is to propose strategy of constructing investment portfolios based on the composition of distributions obtained by using high–low data. The ensemble of 176 Evolino recurrent neural networks (RNN) trained in parallel investigated as an artificial intelligence solution, which applied in forecasting of financial markets. Predictions made by this tool twice a day with different historical data give two distributions of expected values, which reflect future dynamic exchange rates. Constructing the portfolio, according to the shape, parameters of distribution and the current value of the exchange rate allows the optimization of trading in daily exchange-rate fluctuations. Comparison of a high-low portfolio with a close-to-close portfolio shows the efficiency of the new forecasting tool and new proposed trading strategy

    Financial market prediction system with Evolino neural network and Delphi method

    Get PDF
    Use of artificial intelligence systems in forecasting financial markets requires a reliable and simple model that would ensure profitable growth. The model presented in the paper combines Evolino recurrent neural networks with orthogonal data inputs and the Delphi expert evaluation method for its investment portfolio decision making process. A statistical study demonstrates the reliability of the model and describes its accuracy. Capabilities of the model are demonstrated using a trading simulation

    Performance Evaluation of Parallel Haemodynamic Computations on Heterogeneous Clouds

    Get PDF
    The article presents performance evaluation of parallel haemodynamic flow computations on heterogeneous resources of the OpenStack cloud infrastructure. The main focus is on the parallel performance analysis, energy consumption and virtualization overhead of the developed software service based on ANSYS Fluent platform which runs on Docker containers of the private university cloud. The haemodynamic aortic valve flow described by incompressible Navier-Stokes equations is considered as a target application of the hosted cloud infrastructure. The parallel performance of the developed software service is assessed measuring the parallel speedup of computations carried out on virtualized heterogeneous resources. The performance measured on Docker containers is compared with that obtained by using the native hardware. The alternative solution algorithms are explored in terms of the parallel performance and power consumption. The investigation of a trade-off between the computing speed and the consumed energy is performed by using Pareto front analysis and a linear scalarization method

    On Efficiency of Parallel Solvers for the Blood Flow through Aortic Valve

    Get PDF
    Mathematical modelling of cardiac haemodynamics presents a great challenge to the computational scientists due to numerous numerical issues and required computational resources. In this paper, we study the parallel performance of 3D simulation software for the blood flow through the aortic valve. The fluid flow problem with the open aortic valve leaflets is formulated and solved in parallel. The choice between the segregated and coupled numerical schemes is discussed and investigated. We present and compare the parallel performance results of both types of parallel solvers. We investigate their strong and weak scalability

    INVESTIGATION OF TIRE FORCE TRANSMISSION ON INTERACTION WITH SLUSH

    Get PDF
    The main parameters describing the interaction between a tire and the road are forces transmitted by a tire. This paper presents experimental and theoretical research of mechanism of force transmission between a tire and slush-covered pavement. The experimental research was conducted in the internal drum test facility at the Karlsruhe Institute of Technology in Germany. The theoretical research presents a mathematical model of the system “"sub-block–slush layer–drum” focusing on slush behavior. The model evaluates mass change velocity of slush layer, mass, and physical–mechanical properties of sub-block. Slush was analyzed as a multi-layer bulk. The obtained velocities of slush layers and friction forces from the model allowed us to determine the generated heat per time unit at each layer. It was found that the top layer of slush has the highest velocity and heat flow values compared to other layers

    Discrete element simulation of particle motion in ball mills based on similarity

    Get PDF
    Discrete element (DE) simulation of a ball mill with a large number of particles is challenging when each particle is considered. Similarity principle could be adopted to reduce the number of particles in a simulation whilst still maintaining the accurate flow behaviour of particles. This paper presents a scaling relationship between particle gravitational acceleration, mill diameter and mill rotational speed. A series of scaled simulations of particle motion with different mill diameters are carried out. Consistent motion of a single particle and multiple particles in ball mills with different diameters and rotational speeds verifies the proposed relationship, which could be an effective approach to reduce the size of simulations for ball mills

    FEM-Based Compression Fracture Risk Assessment in Osteoporotic Lumbar Vertebra L1

    No full text
    This paper presents a finite element method (FEM)-based fracture risk assessment in patient-specific osteoporotic lumbar vertebra L1. The influence of osteoporosis is defined by variation of parameters such as thickness of the cortical shell, the bone volume–total volume ratio (BV/TV), and the trabecular bone score (TBS). The mechanical behaviour of bone is defined using the Ramberg–Osgood material model. This study involves the static and nonlinear dynamic calculations of von Mises stresses and follows statistical processing of the obtained results in order to develop the patient-specific vertebra reliability. In addition, different scenarios of parameters show that the reliability of the proposed model of human vertebra highly decreases with low levels of BV/TV and is critical due to the thinner cortical bone, suggesting high trauma risk by reason of osteoporosis
    corecore