4,885 research outputs found

    Control structures for high speed processors

    Get PDF
    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder

    A Note on the Effects on Unemployment Insurance, Minimum Wage Legislation and Trade Union Growth on Reported Unemployment Rates in Canada, 1950-1975

    Get PDF
    The paper analyzes the effects of the factors noted in the title on reported unemployment rates, both theoretically and empirically. The implications of the results for the natural rate debate and macroeconomic stabilization policies are briefly discussed

    Possible f-wave superconductivity in Sr2_2RuO4_4?

    Full text link
    Until recently it has been believed that the superconductivity in Sr2_2RuO4_4 is described by p-wave pairing. However, both the recent specific heat and the magnetic penetration depth measurements on the purest single crystals of Sr2_2RuO4_4 appear to be explained more consistently in terms of f-wave superconductivity. In order to further this hypothesis, we study theoretically the thermodynamics and thermal conductivity of f-wave superconductors in a planar magnetic field. We find the simple expressions for these quantities when HHc2H \ll H_{c2} and TTcT \ll T_{c}, which should be readily accessible experimentally.Comment: 6 pages, 2 figure

    Effects of Dissipation on Quantum Phase Slippage in Charge Density Wave Systems

    Full text link
    We study the effect of the dissipation on the quantum phase slippage via the creation of ``vortex ring'' in charge density wave (CDW) systems. The dissipation is assumed to come from the interaction with the normal electron near and inside of the vortex core. We describe the CDW by extracted macroscopic degrees of freedom, that is, the CDW phase and the radius of the ``vortex ring'', assume the ohmic dissipation, and investigate the effect in the context of semiclassical approximation. The obtained results are discussed in comparison with experiments. It turns out that the effect of such a dissipation can be neglected in experiments.Comment: 9 pages (revtex), 2 figures, using epsf.st

    Pairbreaking Without Magnetic Impurities in Disordered Superconductors

    Get PDF
    We study analytically the effects of inhomogeneous pairing interactions in short coherence length superconductors, using a spatially varying Bogoliubov-deGennes model. Within the Born approximation, it reproduces all of the standard Abrikosov-Gor'kov pairbreaking and gaplessness effects, even in the absence of actual magnetic impurities. For pairing disorder on a single site, the T-matrix gives rise to bound states within the BCS gap. Our results are compared with recent scanning tunneling microscopy measurements on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities.Comment: 4 pages, 2 figures, submitted to PR

    The upper critical field of filamentary Nb3Sn conductors

    Get PDF
    We have examined the upper critical field of a large and representative set of present multi-filamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90-99 % of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero temperature critical field that is comparable to the ternary wires. The highest mu0Hc2 detected in the ternary wires are remarkably constant: The highest zero temperature upper critical fields and zero field critical temperatures fall within 29.5 +/- 0.3 T and 17.8 +/- 0.3 K respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two parameter fit, independent of composition, strain state, sample layout or applied critical state criterion.Comment: Accepted Journal of Applied Physics Few changes to shorten document, replaced eq. 7-

    London penetration depth and strong pair-breaking in iron-based superconductors

    Full text link
    The low temperature variation of the London penetration depth for a number of iron-pnictide and iron-chalcogenide superconductors is nearly quadratic, Δλ(T)=βTn\Delta \lambda(T) = \beta T^n with n2n\approx 2. The coefficient in this dependence shows a robust scaling, β1/Tc3\beta \propto 1/T_c^3 across different families of these materials. We associate the scaling with a strong pair-breaking. The same mechanism have recently been suggested to explain the scalings of the specific heat jump, ΔCTc3\Delta C \propto T_c^3, and of the slopes of the upper critical field, dHc2/dTTcdH_{c2}/dT\propto T_c in these materials. This suggests that thermodynamic and electromagnetic properties of the iron-based superconductors can be described within a strong pair-breaking scenario

    Formation of magnetic impurities and pair-breaking effect in a superfluid Fermi gas

    Full text link
    We theoretically investigate a possible idea to introduce magnetic impurities to a superfluid Fermi gas. In the presence of population imbalance (N>NN_\uparrow>N_\downarrow, where NσN_\sigma is the number of Fermi atoms with pseudospin σ=,\sigma=\uparrow,\downarrow), we show that nonmagnetic potential scatterers embedded in the system are magnetized in the sense that some of excess \uparrow-spin atoms are localized around them. They destroy the superfluid order parameter around them, as in the case of magnetic impurity effect discussed in the superconductivity literature. This pair-breaking effect naturally leads to localized excited states below the superfluid excitation gap. To confirm our idea in a simply manner, we treat an attractive Fermi Hubbard model within the mean-field theory at T=0. We self-consistently determine superfluid properties around a nonmagnetic impurity, such as the superfluid order parameter, local population imbalance, as well as single-particle density of states, in the presence of population imbalance. Since the competition between superconductivity and magnetism is one of the most fundamental problems in condensed matter physics, our results would be useful for the study of this important issue in cold Fermi gases.Comment: 27 pages, 14 figure

    Thermal conductivity in B- and C- phase of UPt_3

    Full text link
    Although the superconductivity in UPt_3 is one of the most well studied, there are still lingering questions about the nodal directions in the B and C phase in the presence of a magnetic field. Limiting ourselves to the low temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with in semiclassical approximation using Volovik's approach. The angular dependence of the magnetothermal conductivity for an arbitrary field direction should clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure

    Combined Electroweak Analysis

    Full text link
    Recent developments in the measurement of precision electroweak measurements are summarised, notably new results on the mass of the top quark and mass and width of the W boson. Predictions of the Standard Model are compared to the experimental results which are used to constrain the input parameters of the Standard Model, in particular the mass of the Higgs boson. The agreement between measurements and expectations from theory is discussed. Invited talk presented at the EPS HEP 2007 conference Manchester, England, July 19th to 25th, 2007Comment: 7 pages and 6 figure
    corecore