

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19820015018 2020-03-21T09:17:59+00:00Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42856888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

t

CONTROL STRUCTURES FOR HIGH SPEED PROCESSORS

t
I

(NASA-LU-IbbIII) CUltZ13UL STltUCTURLS tUR	 N81-11891
HIGH SPELD PH OCESSORS (Idaho Univ.) 11 p
hC AU1/KF AU1	 CSCL 09B

Unclas
GJ/6U 19158

by

Gary K. Maki

Robb Mankin

Patrick A. Owsley

Guihang Moon Kim

Electrical Engineering Department

University of Idaho

Moscow, Idaho 83843

NASA Grant
NAG 5-93

ABSTRACT

A special purpose processor was designed to function as a Reed

Solomon decoder with a throughput data rate in the Mhz range. This

data rate is significantly greater than is possible with conventional

digital architectures. To achieve this rate, the processor design in-

cludes sequential, pipelined, distributed, and parallel processing.

The processor was designed using a high level language RTL ;reg-

ister transfer language). RTL can be used to describe how the differ-

ent processes are implemented by the hardware. One problem of special

interest was the development of dependent processes which are analogous

to software subroutines. For greater flexibility, the RTL control

structure was implemented in ROM.

The special purpose hardware required approximately 1000 SSI and

MSI components. The data rate throughput is 2.5 megabits/second.

This data rate is achieved through the use of pipelined and distributed

processing. This data rate can be compared with 800 kilobits/second

Iin a recently proposed VLSI design of a Reed Solomon ENCODER.

I. INTRODUCTION

A working design that implements the features of sequential, pipe-

lined, distributed and parallel processing is described in this paper.

This processor consists of seven unique modules that operate asynchron-

ously. Each module displays the characteristics of sequential, pipelined,

distributed, and/or parallel processing. The state control within each

module specifies the desired mode of operation. A major part of this

paper is to describe control mechanisms that were used to implement the

various modes of operation.

The processor function is to decode Reed Solomon Codes over GF(2**8).

Each code word consists of up to 255 8-bit symbols and can correct up to

16 symbol errors. The Reed Solomon code is known for its powerful error

correcting capabilities and has gained much recent attention. A recent

VLSI design of a Reed Solomon encoder details some of the applicationsl.

The reader can refer to a coding theory textbook such as Peterson and

Weldon2 for details of cyclic codes. It is not necessary to understand

coding theory nuances to appreciate the results presented in this paper.

Following is a definition of the processing requirements of the

modules in general terms.

i) Simple serial to parallel conversion of the input data

stream. The 8-bit symbols are stored in buffered RAM.

ii) Calculate 32 syndrome vectors by solving 32 equations

of order 254.

iii) Formulate a 16 by 16 matrix and determine the rank t,

with t less than or equal to 16.

^S

Z

2

iv) Solve t simultaneous equations.

v) Evaluate 255 equations of order t.

vi) Evaluate t equations which is the division of two polynomials

of order t.

vii) Correct output data and present correct results.

All of the above operations must be performed in the Galois Field GF(2**8).

The operations in GF(2**8) are 8-bit modulo 2 addition and multiplication

in the field of polynomials modulo f(x) = X**8 + X**4 + X**3 + X**2 + 1.

The addition operation is easily implemented. However, the multiplica-

tion operation must be accomplished through the use of logarithm and

anti-logarithm tables. These tables result from the fact that the code

is cyclic. Multiplication is accomplished with these tables using modulo

255 addition.

II. DESIGN APPROACH

The completed system required about 1000 SSI and MSI components.

Naturally when a design of this magnitude is undertaken, it is impossible

for the designer to formulate the final implementation using low level

logic design tools such as logic diagrams. It is necessary to use a

high level language to properly focus attention on the design problems

and avoid the unnecessary distractions of specific hardware details of

realizing individual chips. The language used in this design is one

developed at the University of Idaho but is not unlike many other design

languages that are in existence 3 . An important feature of this language

is the ability to allow the designer to remain conscious of the control

structure of the machine. Access to the control structure is important

_ ...	 -...A

3

in order to specify the mode of processing and to distinguish between

sequential, parallel, pipelined, and distributed processing. This

design langauge has relatively simple constructs to allow the designer

close association with the control structure. Basically, an RTL state-

ment has the following structure.

<control expression>: <list of actions>

<Control expression> is a boolean expression which can be easily imple-

mented using any of several standar :introl structures. <List of

actions> is a set of unconditional transfers, register transfers, con-

ditional transfers, and control modification statements. Evaluation

of the statement proceeds as follows: whenever the control expression

is evaluated TRUE (i.e., <control expression> = 1) all transfers within

<list of actions> become active, otherwise no transfers will occur.

The above basic statement can be modified by use of the IF-THEN-

ELSE conditional statement. This modification allows for more flex-iA lity

for the designer without sacrificing control consciousness. The basic

form of the IF-THEN-ELSE construct is as follows:

<control expression>: <list of actions> (1);

IF <rel expression> THEN <list of actions> (2);

<li,t of actions> (3);

In essence the procedure to implement the above structure would be as

follows:

<control expression>: <list of actions> (1);

<control expression>*<rel expression>: <list of actions> (2);

<control expression>*<rel expression>': <list of actions> (3);

in Figure 1.

other
control ---^►
states

control
flip-	 ++^ Ci

4

An example of the control structure in the RTL is shown next:

S5*CK: SPTR - 1 -> SPTR	 /* Decrement SPTR	 */

0 -> S5	 /* <list of actions> (1)*/

IF SPTR - 0 THEN 1 -> S6 /* <list of actions> (2)*/

ELSE 1 -> S1 /* <list of actions> (3)*/

This statement would be evaluated as follows:

S5*CK: SPTR - 1 -> SPTR

0 -> S5

(S5*CK)*(SPTR=O): 1 -> S6

(S5*CK)*(SPTR#0): 1	 S1

The hardware to implement the control structure utilizes ROMs, as depicted

conditional
expression	 ROM	 flops

Figure 1. Hardware Implementation of Control

5

Following is an example of RTL implemented with a ROM controller.

DECLARE (A,B,D) Register, (COUNT, C) Counter

Q: IF <GO> - 1 THEN 1 -> C1, 0 -> CO

Cl: A + B -> C, 0 -> C1, 1 -> C2

IF <C=O> THEN COUNT - 1 -> COUNT

C2: C .AND. D -> C, 0 -> C2, 1 -> C3

C3: C + 1 -> C, 0 -> C3, IF <COUNT = 0> THEN 1 -> C4

ELSE 1 -> C1

C4: IF <READY> = 1 THEN 1 -> CO, 0 -> C4

ELSE 1 -> C4

The ROM to control this small process would consist of 8 inputs and

6 outputs. The inputs would be the control states {Cil, i = 0,1,...,4,

and the signals GO, COUNT = 0, and READY. The outputs would drive the

control state flip-flops and conditional decrement of COUNT in control

state C1. All unconditional transfers would be enabled by the control

state flip-flops.

The chief advantages associated with using this structure include

reduced hardware and flexibility. During the design process it is not

uncommon to discover design oversights or to require a modification in

the design algorithm. With the control programmed into a ROM, these modi-

fications can be more easily implemented. Another desirable feature,

which will become more apparent later in the paper, is that one can

change a sequential process into a pipelined process through repro-

gramming the control ROM. This assumes that the necessary holding regis-

ters are available to allow for pipelined data flow. In the processor

i
6

described here, ROMs were used. PLAs or PALs, with internal flip-flops,

could be used and would have served to implement the control more

efficiently.

Definition: A process P is a set of operations that is specified by a

set of control states {Ci} which define a sequence of register operations.

A process can assume any of the following modes: sequential, pipe-

lined, parallel, or distributed. The control states specify the mode

desired. Following is the specification of these modes of operation.

In the sequential mode, the control structure is

Ci: Ci inactive, Ci + 1 active.

In this mode of operation, successive control states are normally

assumed. Furthermore, only one control state is active at any one moment.

The RTL example above illustrates the sequential process.

In the pipelined mode, the general control structure is

INITIAL STATE CO: IF <start$expression> = TRUE THEN C1 active.

INTERNAL STATES OF THE PROCESS	 Ci: Ci -> Ci + 1

END STATE: IF <end$expression> = TRUE THEN C1 inactive

The pipelined process is initiated whenever the start expression is

true and then state C1, the first state of the pipelined process, is

activated. Once C1 is active, then successive stages of the pipelined

process become active. The pipelined process is inactivated when the

end expression becomes true and then C1 is made inactive, which in turn

inactivates the successive stages of the process. As distinguished from

the sequential process, many control states are active at the same

instant of time.

7

An example of a pipe. inc:d process is given below.

DECLARE (A,B,C,D,E,F) REGISTER, COUNT COUNTER

CO: IF <GO - 1> THEN i -> C1, 0 -> CO

Cl: A - 8 -> C, C1 -> CL

IF <C - O> THEN COUNT - 7 -> COUNT

IF <COUNT = O> THEN 0 -> C1

ELSE 1 -> C1

C2: C2 -> C3, C . X:P.. D -> E

C3: E + 1 -> F.. iF `r; - 0 AND C3 - 1> THEN 1 -> C4

ELSE 0 -> C4

C4: IF <READY - 1> THEN 1 -> CO, 0 -> C4

ELSE 1 -> C4

State CO is the initial state and C1 the first state in the pipeline.

C1 also serves as the end state in that information concerning when the

process is to terminate is determined in C1. Control hardware for this

process is implemented with a ROM or PLA. Note also that this pipelined

process is functionally equivalent to the sequential process listed above.

The differences are associated with the control and the extra registers

to allow pipelined data flow.

For parallel processing, consider the control set of states {Ri}

and {Sir, where RO and SO are the initial states of parallel processes

R and S. Both processes are initiated as follows:

R0: IF <begin$expression> - TRUE then R1 active, RO inactive.

SO: I F <begin$expression> - TRUE then S1 active, SO inactive.

8	 ^

Each process can be initiated asynchronously and both processes can be

active. Each process can be sequential or pipelined. For example, both

of the RTL examples atove could be activated to operate in parallel.

One of the challenges in hardware design is to implement a process

similar to a subroutine in software. Several processes of this nature,

which could be termed dependent processes, were implemented in the design

presented in the paper. The problem of initiating a dependent process is

not difficult for it would involve only making the <begin$expression>

evaluate true. The challenge comes in providing a "return address."

Definition: A main process is one that is not called or initiated by

some other process. A dependent process is one that is initiated by

another process and returns control back to the process that does the

initiating.

A dependent process can be initiated by several main processes or

by one main process from several of its control states. The main process,

after initiating a dependent process, can continue executing, or can

suspend activity until the dependent process completes execution.

Definition: The contrcl state in the main process which is to become

active after a dependent process has completed processing is called

the return control state.

One big challenge with designing a dependent process is to provide

a mechanism to allow for the return control state in the main process to

be activated. There are several possibilities. First is to implement

that which is done in computer software by providing a RAM that will

store the proper return control state. This is most general and allows

9	 1

the greatest flexibility but at the expense of hardware. Normally the

degree of flexibility that this approach allows is not required in

special purpose hardware implementations since the return control states

are relatively few and well defined.

The approach used by the authors is that of setting one of several

state flip-flops available to the dependent process that would specify

the return control state in the main process. The disadvantages with

this approach is reduced flexibility and hardware defined return control

states. Since the number of return control states is small, the hardware

benefits outweighed the general approach.

If main process activity is to be suspended, then a simple approach

to the design of the dependent process is to provide no return control

state. The main process simply would enter a control state that would

wait until the dependent process is complete. An example of this type of

control is

Ci: IF'<Dependent$Process$Complete> - TRUE THEN Q active, Ci inactive

ELSE Ci remains active

This approach is useful for those applications where a dependent process

is initiated from only one main process and the number of return control

states in the main process is relatively large. On the surface it would

appear that the maJor cost is mutual exclusion of processing between the

main and dependent process.

In considering this in more detail, let mutual exclusion of processing

meet either of the following conditions: Let M and D denote the Main and

Dependent processes respectively.

.-s

10

a) Time mutual exclusion where the hardware Elements (registers,

memories, etc.) that M and D both have access to are not being

used by M and D at the same time.

b) Hardware mutual exclusion where the hardware elements of M and

D are accessible to only one process.

If M is suspended then time mutual exclusion is insured and indeed only

one process is active at any one moment. If hardware mutual exclusion

is true, then both the mein and dependent processors can operate in

parallel. M can initiate D and then continue to process until it is ready

to utilize the results of D, at which time it could check the status of D

to determine if it has completed the process. It is possible to combine

both hardware and time mutual exclusion. M and D can share hardware and

therefore both cannot attempt to use that hardware at the same time.

M in general has hardware that is not available to D. Therefore, M can

initiate D and then process until a control state is entered that would

require the use of hardware that D utilizes. Upon entering that control

state, M must wait until D is complete and operate in the time mutual

exclusion mode, where prior to entering this control state M operated in

the hardware mutual exclusion mode. The processor designed here has

operated in all three modes: time mutual exclusion, hardware mutual ex-

clusion, and combined time and hardware mutual exclusion.

III. FAULT DETECTION

An 8085 microprocessor-based system is prcvided in the system to

provide for input/output operations between the user and the system and

11	 '

to act as an Interface for running diagnostic tests. The operating

system of the microprocessor has a built-in set of tests that can be

invoked. The operator specifies the test data that will be used, the

module in which to insert the test data, and the module from which the

data is to be observed. For a built-in test set, a known output re-

sponseis expected. If the desired output does not occur, then an error

signal is given along with diagnostic information that can be useful

for determining the location of the fault. The operator also has the

option of specifying the input test set. If the system is operating

in this mode. then the observed output is presented on a CRT screen.

This feature allows for powerful diagnostic tools to be available to the

user, where test data can be inserted at any point in the processor and

the results observed at another point.

REFERENCES

1. K. Y. Liu, "Architecture for VLSI Design of Reed Solomon Encoders,"
pp. 170-175, IEEETC February 1982.

2. W. W. Peterson and E. J. Weldon, ERROR CORRECTING CODES, MIT Press,
1972.

3. S. G. Shiva, "Computer Hardware Description Language," pp 1605-1615,
Proceedings of IEEE, December 1979.

	1982015018.pdf
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF

