7 research outputs found

    Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: Results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes

    No full text
    BACKGROUND: A fixed-ratio combination of the basal insulin analogue insulin degludec and the glucagon-like peptide-1 (GLP-1) analogue liraglutide has been developed as a once-daily injection for the treatment of type 2 diabetes. We aimed to compare combined insulin degludec-liraglutide (IDegLira) with its components given alone in insulin-naive patients. METHODS: In this phase 3, 26-week, open-label, randomised trial, adults with type 2 diabetes, HbA1c of 7-10% (inclusive), a BMI of 40 kg/m(2) or less, and treated with metformin with or without pioglitazone were randomly assigned (2:1:1) to daily injections of IDegLira, insulin degludec, or liraglutide (1\ub78 mg per day). IDegLira and insulin degludec were titrated to achieve a self-measured prebreakfast plasma glucose concentration of 4-5 mmol/L. The primary endpoint was change in HbA1c after 26 weeks of treatment, and the main objective was to assess the non-inferiority of IDegLira to insulin degludec (with an upper 95% CI margin of 0\ub73%), and the superiority of IDegLira to liraglutide (with a lower 95% CI margin of 0%). This study is registered with ClinicalTrials.gov, number NCT01336023. FINDINGS: 1663 adults (mean age 55 years [SD 10], HbA1c 8\ub73% [0\ub79], and BMI 31\ub72 kg/m(2) [4\ub78]) were randomly assigned, 834 to IDegLira, 414 to insulin degludec, and 415 to liraglutide. After 26 weeks, mean HbA1c had decreased by 1\ub79% (SD 1\ub71) to 6\ub74% (1\ub70) with IDegLira, by 1\ub74% (1\ub70) to 6\ub79% (1\ub71) with insulin degludec, and by 1\ub73% (1\ub71) to 7\ub70% (1\ub72) with liraglutide. IDegLira was non-inferior to insulin degludec (estimated treatment difference -0\ub747%, 95% CI -0\ub758 to -0\ub736, p<0\ub70001) and superior to liraglutide (-0\ub764%, -0\ub775 to -0\ub753, p<0\ub70001). IDegLira was generally well tolerated; fewer participants in the IDegLira group than in the liraglutide group reported gastrointestinal adverse events (nausea 8\ub78 vs 19\ub77%), although the insulin degludec group had the fewest participants with gastrointestinal adverse events (nausea 3\ub76%). We noted no clinically relevant differences between treatments with respect to standard safety assessments, and the safety profile of IDegLira reflected those of its component parts. The number of confirmed hypoglycaemic events per patient year was 1\ub78 for IDegLira, 0\ub72 for liraglutide, and 2\ub76 for insulin degludec. Serious adverse events occurred in 19 (2%) of 825 patients in the IDegLira group, eight (2%) of 412 in the insulin degludec group, and 14 (3%) of 412 in the liraglutide group. INTERPRETATION: IDegLira combines the clinical advantages of basal insulin and GLP-1 receptor agonist treatment, resulting in improved glycaemic control compared with its components given alone

    Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes.

    No full text
    BACKGROUND: A fixed-ratio combination of the basal insulin analogue insulin degludec and the glucagon-like peptide-1 (GLP-1) analogue liraglutide has been developed as a once-daily injection for the treatment of type 2 diabetes. We aimed to compare combined insulin degludec-liraglutide (IDegLira) with its components given alone in insulin-naive patients. METHODS: In this phase 3, 26-week, open-label, randomised trial, adults with type 2 diabetes, HbA1c of 7-10% (inclusive), a BMI of 40 kg/m(2) or less, and treated with metformin with or without pioglitazone were randomly assigned (2:1:1) to daily injections of IDegLira, insulin degludec, or liraglutide (1·8 mg per day). IDegLira and insulin degludec were titrated to achieve a self-measured prebreakfast plasma glucose concentration of 4-5 mmol/L. The primary endpoint was change in HbA1c after 26 weeks of treatment, and the main objective was to assess the non-inferiority of IDegLira to insulin degludec (with an upper 95% CI margin of 0·3%), and the superiority of IDegLira to liraglutide (with a lower 95% CI margin of 0%). This study is registered with ClinicalTrials.gov, number NCT01336023. FINDINGS: 1663 adults (mean age 55 years [SD 10], HbA1c 8·3% [0·9], and BMI 31·2 kg/m(2) [4·8]) were randomly assigned, 834 to IDegLira, 414 to insulin degludec, and 415 to liraglutide. After 26 weeks, mean HbA1c had decreased by 1·9% (SD 1·1) to 6·4% (1·0) with IDegLira, by 1·4% (1·0) to 6·9% (1·1) with insulin degludec, and by 1·3% (1·1) to 7·0% (1·2) with liraglutide. IDegLira was non-inferior to insulin degludec (estimated treatment difference -0·47%, 95% CI -0·58 to -0·36, p<0·0001) and superior to liraglutide (-0·64%, -0·75 to -0·53, p<0·0001). IDegLira was generally well tolerated; fewer participants in the IDegLira group than in the liraglutide group reported gastrointestinal adverse events (nausea 8·8 vs 19·7%), although the insulin degludec group had the fewest participants with gastrointestinal adverse events (nausea 3·6%). We noted no clinically relevant differences between treatments with respect to standard safety assessments, and the safety profile of IDegLira reflected those of its component parts. The number of confirmed hypoglycaemic events per patient year was 1·8 for IDegLira, 0·2 for liraglutide, and 2·6 for insulin degludec. Serious adverse events occurred in 19 (2%) of 825 patients in the IDegLira group, eight (2%) of 412 in the insulin degludec group, and 14 (3%) of 412 in the liraglutide group. INTERPRETATION: IDegLira combines the clinical advantages of basal insulin and GLP-1 receptor agonist treatment, resulting in improved glycaemic control compared with its components given alone

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    Cardiorenal end points in a trial of aliskiren for type 2 diabetes.

    Get PDF
    Background This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 dia- betes and chronic kidney disease, cardiovascular disease, or both. Methods In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting\u2013enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. Results The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pres- sures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, 656 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). Conclusions The addition of aliskiren to standard therapy with renin\u2013angiotensin system block- ade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful

    Cardiorenal end points in a trial of aliskiren for type 2 diabetes.

    No full text
    BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, 656 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore