232 research outputs found

    DCS liquid-based system is more effective than conventional smears to diagnosis of cervical lesions : study in high-risk population with biopsy-based confirmation

    Get PDF
    Objective. To compare the performances of Papanicolaou test (PapTest) and of a new liquid-based cytology method, DNA-CitoliqR System (DCS), in a high-risk population, with histology confirmation. Methods. Paired specimens of exfoliated cervical cells were collected under split-sample protocol. All patients were submitted to colposcopy and a biopsy taken when any atypical transformation zone was seen. Sensitivity, specificity, positive and negative predictive values, and overall accuracy of both conventional and DCS methods were computed in relation to histology. Results. A total of 1095 patients were analyzed by two cytology methods and, in 425 (38.8%), histologically. There were significantly more adequate samples with DCS (98.63%) than with conventional (89.6%) smears ( P < 0.001). ASCUS was diagnosed significantly more with DCS than with conventional Pap ( P < 0.001). Conventional Pap misclassified as normal 55.4% (158/285) of cases with either LSIL or HSIL or cancer at histology, whereas DCS misclassified 31.2% (89/285) of cases ( P < 0.001). DCS had a significantly higher sensitivity (70% and 91.3%) than the conventional Pap (49.8% and 72.8%) to detect both LSIL+ and HSIL+ at histology, respectively. On the other hand, specificity of conventional smear (88.2% and 85.2%) was significantly higher than DCS (75.4% and 70.9%) considering both LSIL+ and HSIL+ at histology, respectively. Conclusions. This study confirms the superiority of the liquid-based cytology system DCS to detect cervical lesions. The rate of adequate DSC slides was significantly higher than with conventional cytology

    A Monte Carlo simulation of ion transport at finite temperatures

    Full text link
    We have developed a Monte Carlo simulation for ion transport in hot background gases, which is an alternative way of solving the corresponding Boltzmann equation that determines the distribution function of ions. We consider the limit of low ion densities when the distribution function of the background gas remains unchanged due to collision with ions. A special attention has been paid to properly treat the thermal motion of the host gas particles and their influence on ions, which is very important at low electric fields, when the mean ion energy is comparable to the thermal energy of the host gas. We found the conditional probability distribution of gas velocities that correspond to an ion of specific velocity which collides with a gas particle. Also, we have derived exact analytical formulas for piecewise calculation of the collision frequency integrals. We address the cases when the background gas is monocomponent and when it is a mixture of different gases. The developed techniques described here are required for Monte Carlo simulations of ion transport and for hybrid models of non-equilibrium plasmas. The range of energies where it is necessary to apply the technique has been defined. The results we obtained are in excellent agreement with the existing ones obtained by complementary methods. Having verified our algorithm, we were able to produce calculations for Ar+^+ ions in Ar and propose them as a new benchmark for thermal effects. The developed method is widely applicable for solving the Boltzmann equation that appears in many different contexts in physics.Comment: 14 page

    Hadal water biogeochemistry over the Izu–Ogasawara Trench observed with a full-depth CTD-CMS

    Get PDF
    Full-depth profiles of hydrographic and geochemical properties at the Izu–Ogasawara Trench were observed for the first time using a CTD-CMS (conductivity–temperature–depth profiler with carousel multiple sampling) system. Additionally, comparative samplings were done at the northern Mariana Trench using the same methods. A well-mixed hydrographic structure below 7000 m was observed within the Izu–Ogasawara Trench. Seawater samples collected from this well-mixed hadal layer exhibited constant concentrations of nitrate, phosphate, silicate, and nitrous oxide as well as constant nitrogen and oxygen isotopic compositions of nitrate and nitrous oxide. These results agree well with previous observations of the Izu–Ogasawara hadal waters and deep-sea water surrounding the Izu–Ogasawara Trench. In turn, methane concentrations and isotopic compositions indicated spatial heterogeneity within the well-mixed hadal water mass, strongly suggesting a local methane source within the trench, in addition to the background methane originating from the general deep-sea bottom water. Sedimentary compound releases, associated with sediment re-suspensions, are considered to be the most likely mechanism for generating this significant CH4 anomaly.</p

    Boundary and defect CFT: Open problems and applications

    Get PDF
    A review of Boundary and defect conformal field theory: open problems and applications, following a workshop held at Chicheley Hall, Buckinghamshire, UK, 7–8 Sept. 2017. We attempt to provide a broad, bird’s-eye view of the latest progress in boundary and defect conformal field theory in various sub-fields of theoretical physics, including the renormalization group, integrability, conformal bootstrap, topological field theory, supersymmetry, holographic duality, and more. We also discuss open questions and promising research directions in each of these sub-fields, and combinations thereof

    Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Get PDF
    International audienceWe discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ?benchmark data? is necessary. Examples will be given regarding the studies of electron power absorption modes in O 2 , and CF 4 ?Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O 2 capacitively coupled plasmas

    Future studies on electron scattering; A renaissance

    Get PDF
    2014 is the centenary of the first announcement of the Franck-Hertz experiment [1], now regarded as one of the pivotal experiments of modern physics. The Franck-Hertz experiment is widely regarded as an experiment that provided validation of the Bohr theory of atomic structure, itself only published in 2013, however it should also be viewed as the first quantitative experiment in electron scattering and the birth of scientific study of atomic and molecular phenomena by collisions. Today we recognize that electron-atom and electron- molecule collisions are prevalent across nature, describing disparate phenomena whilst the exploitation of such collisions underpins many of the technologies upon which modern society relies. The centenary of the Franck-Hertz experiment is thus a suitable opportunity to review both our current knowledge of electron interactions and to consider the directions of future research. In this article I therefore aim to both review our current state of knowledge and look forward, proposing that recent advances are providing something of a renaissance to the field and are vital for emerging technologies as well as answering some of the greatest scientific challenges of the 21st century
    corecore