2,960 research outputs found
Parataxonomía: un test utilizando escarabajos
The present study examines the utility of parataxonomic
sorting (groupings of similar individuals, categorized by non–experts, relying on features of external morphology) using data from a study of beetle communities in four forest habitats in Nova Scotia,
Canada. Alpha diversity and the Shannon–Weaver, Simpson, Berger–Parker, and Brillouin indices of
diversity, derived from both taxonomic species and parataxonomic units, are compared and yield identical
habitat rankings. Beta diversity rankings derived from both data sets do not differ although they produce
slightly different rankings. The Elateridae, Curculionidae, Cantharidae, and Staphylinidae had particularly large numbers of "lumping" and "splitting" errors. Although the overall gross sorting error was only 14%, individual families of beetles had errors between 0% and 200% with an average error of 38%. The limitations of the parataxonomic approach are discussed; both in regard to the practical application of the concept, as well its theoretical basis. We note the spillover of this discourse to the subject of what constitutes a species and observe that this discussion has been misplaced due to the unfortunate confusion of the two usages of the term "morphospecies".El presente estudio examina la utilidad de la ordenación parataxonómica (agrupación de individuos similares, categorizados por aficionados, basada en caracteres
morfológicos externos) usando los datos de un estudio de comunidades de escarabajos de cuatro hábitats forestales de Nueva Escocia, Canadá. Se comparan la diversidad alfa y los índices de diversidad de Shannon–Weaver, Simpson, Berger–Parker y Brillouin, obtenidos tanto de especies taxonómicas como de unidades parataxonómicas, dando como resultado rankings de hábitats idénticos. Los rankings de diversidad beta procedentes de ambas series de datos no se diferencian, aunque arrojan rankings ligeramente distintos. Los Elateridae, Curculionidae, Cantharidae y Staphylinidae presentaban gran cantidad de errores de "agrupación" y "escisión". Aunque el error de clasificación bruto global era tan solo del 14%, algunas familias de escarabajos presentaban errores de entre el 0 y el 200%, con un error medio del 38%. Se discuten las limitaciones del planteamiento parataxonómico; tanto en lo que hace referencia a la aplicación práctica del concepto, como a su base teórica. Esta discusión nos lleva al tema de en qué consiste una especie y nos permite ver como esta discusión ha sido mal enfocada debido a la desafortunada confusión de los dos usos del término "morfoespecie"
Parataxonomy: a test case using beetles
The present study examines the utility of parataxonomic sorting (groupings of similar individuals, categorized by non-experts, relying on features of external morphology) using data from a study of beetle communities in four forest habitats in Nova Scotia, Canada. Alpha diversity and the Shannon-Weaver, Simpson, Berger-Parker, and Brillouin indices of diversity, derived from both taxonomic species and parataxonomic units, are compared and yield identical habitat rankings. Beta diversity rankings derived from both data sets do not differ although they produce slightly different rankings. The Elateridae, Curculionidae, Cantharidae, and Staphylinidae had particularly large numbers of “lumping” and “splitting” errors. Although the overall gross sorting error was only 14%, individual families of beetles had errors between 0% and 200% with an average error of 38%. The limitations of the parataxonomic approach are discussed; both in regard to the practical application of the concept, as well its theoretical basis. We note the spillover of this discourse to the subject of what constitutes a species and observe that this discussion has been misplaced due to the unfortunate confusion of the two usages of the term “morphospecies”
Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters
Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results
Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data
3D reconstruction of the fiber connectivity of the rat brain at microscopic
scale enables gaining detailed insight about the complex structural
organization of the brain. We introduce a new method for registration and 3D
reconstruction of high- and ultra-high resolution (64 m and 1.3 m
pixel size) histological images of a Wistar rat brain acquired by 3D polarized
light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI
data up to cellular resolution. We propose a new feature transform-based
similarity measure and a weighted regularization scheme for accurate and robust
non-rigid registration. To transform the 1.3 m ultra-high resolution data
to the reference blockface images a feature-based registration method followed
by a non-rigid registration is proposed. Our approach has been successfully
applied to 278 histological sections of a rat brain and the performance has
been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in
NeuroImaging (CNI), MICCAI'201
An experimental survey of the production of alpha decaying heavy elements in the reactions of U +Th at 7.5-6.1 MeV/nucleon
The production of alpha particle decaying heavy nuclei in reactions of
7.5-6.1 MeV/nucleon U +Th has been explored using an in-beam
detection array composed of YAP scintillators and gas ionization chamber-Si
telescopes. Comparisons of alpha energies and half-lives for the observed
products with those of the previously known isotopes and with theoretically
predicted values indicate the observation of a number of previously unreported
alpha emitters. Alpha particle decay energies reaching as high as 12 MeV are
observed. Many of these are expected to be from decay of previously unseen
relatively neutron rich products. While the contributions of isomeric states
require further exploration and specific isotope identifications need to be
made, the production of heavy isotopes with quite high atomic numbers is
suggested by the data.Comment: 12 pages, 12 figure
Properties of Exotic Matter for Heavy Ion Searches
We examine the properties of both forms of strange matter, small lumps of
strange quark matter (strangelets) and of strange hadronic matter (Metastable
Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and
future heavy ion searches. The strong and weak decays are discussed separately
to distinguish between long-lived and short-lived candidates where the former
ones are detectable in present heavy ion experiments while the latter ones in
future heavy ion experiments, respectively. We find some long-lived strangelet
candidates which are highly negatively charged with a mass to charge ratio like
a anti deuteron (M/Z=-2) but masses of A=10 to 16. We predict also many
short-lived candidates, both in quark and in hadronic form, which can be highly
charged. Purely hyperonic nuclei are bound and have a negative charge while
carrying a positive baryon number. We demonstrate also that multiply charmed
exotics (charmlets) might be bound and can be produced at future heavy ion
colliders.Comment: 10 pages, 4 figures, uses IOP style and epsf.sty, to be published in
Journal of Physics, Proceedings of the International Symposium on Strangeness
in Quark Matter 1997, April 14-18, Thera (Santorini), Hellas. Corrected
typos, added comment about bag constant
Laboratory Tests of Low Density Astrophysical Equations of State
Clustering in low density nuclear matter has been investigated using the
NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were
employed to extract densities, , and temperatures, , for evolving
systems formed in collisions of 47 MeV Ar + Sn,Sn
and Zn + Sn, Sn. The yields of , , He, and
He have been determined at = 0.002 to 0.032 nucleons/fm and
= 5 to 10 MeV. The experimentally derived equilibrium constants for
particle production are compared with those predicted by a number of
astrophysical equations of state. The data provide important new constraints on
the model calculations.Comment: 5 pages, 3 figure
Formulation of the uncertainty relations in terms of the Renyi entropies
Quantum mechanical uncertainty relations for position and momentum are
expressed in the form of inequalities involving the Renyi entropies. The proof
of these inequalities requires the use of the exact expression for the
(p,q)-norm of the Fourier transformation derived by Babenko and Beckner.
Analogous uncertainty relations are derived for angle and angular momentum and
also for a pair of complementary observables in N-level systems. All these
uncertainty relations become more attractive when expressed in terms of the
symmetrized Renyi entropies
Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter
In medium binding energies and Mott points for , , He and
clusters in low density nuclear matter have been determined at specific
combinations of temperature and density in low density nuclear matter produced
in collisions of 47 MeV Ar and Zn projectiles with Sn
and Sn target nuclei. The experimentally derived values of the in
medium modified binding energies are in good agreement with recent theoretical
predictions based upon the implementation of Pauli blocking effects in a
quantum statistical approach.Comment: 5 pages, 3 figure
- …