2,960 research outputs found

    Parataxonomía: un test utilizando escarabajos

    Get PDF
    The present study examines the utility of parataxonomic sorting (groupings of similar individuals, categorized by non–experts, relying on features of external morphology) using data from a study of beetle communities in four forest habitats in Nova Scotia, Canada. Alpha diversity and the Shannon–Weaver, Simpson, Berger–Parker, and Brillouin indices of diversity, derived from both taxonomic species and parataxonomic units, are compared and yield identical habitat rankings. Beta diversity rankings derived from both data sets do not differ although they produce slightly different rankings. The Elateridae, Curculionidae, Cantharidae, and Staphylinidae had particularly large numbers of "lumping" and "splitting" errors. Although the overall gross sorting error was only 14%, individual families of beetles had errors between 0% and 200% with an average error of 38%. The limitations of the parataxonomic approach are discussed; both in regard to the practical application of the concept, as well its theoretical basis. We note the spillover of this discourse to the subject of what constitutes a species and observe that this discussion has been misplaced due to the unfortunate confusion of the two usages of the term "morphospecies".El presente estudio examina la utilidad de la ordenación parataxonómica (agrupación de individuos similares, categorizados por aficionados, basada en caracteres morfológicos externos) usando los datos de un estudio de comunidades de escarabajos de cuatro hábitats forestales de Nueva Escocia, Canadá. Se comparan la diversidad alfa y los índices de diversidad de Shannon–Weaver, Simpson, Berger–Parker y Brillouin, obtenidos tanto de especies taxonómicas como de unidades parataxonómicas, dando como resultado rankings de hábitats idénticos. Los rankings de diversidad beta procedentes de ambas series de datos no se diferencian, aunque arrojan rankings ligeramente distintos. Los Elateridae, Curculionidae, Cantharidae y Staphylinidae presentaban gran cantidad de errores de "agrupación" y "escisión". Aunque el error de clasificación bruto global era tan solo del 14%, algunas familias de escarabajos presentaban errores de entre el 0 y el 200%, con un error medio del 38%. Se discuten las limitaciones del planteamiento parataxonómico; tanto en lo que hace referencia a la aplicación práctica del concepto, como a su base teórica. Esta discusión nos lleva al tema de en qué consiste una especie y nos permite ver como esta discusión ha sido mal enfocada debido a la desafortunada confusión de los dos usos del término "morfoespecie"

    Parataxonomy: a test case using beetles

    Get PDF
    The present study examines the utility of parataxonomic sorting (groupings of similar individuals, categorized by non-experts, relying on features of external morphology) using data from a study of beetle communities in four forest habitats in Nova Scotia, Canada. Alpha diversity and the Shannon-Weaver, Simpson, Berger-Parker, and Brillouin indices of diversity, derived from both taxonomic species and parataxonomic units, are compared and yield identical habitat rankings. Beta diversity rankings derived from both data sets do not differ although they produce slightly different rankings. The Elateridae, Curculionidae, Cantharidae, and Staphylinidae had particularly large numbers of “lumping” and “splitting” errors. Although the overall gross sorting error was only 14%, individual families of beetles had errors between 0% and 200% with an average error of 38%. The limitations of the parataxonomic approach are discussed; both in regard to the practical application of the concept, as well its theoretical basis. We note the spillover of this discourse to the subject of what constitutes a species and observe that this discussion has been misplaced due to the unfortunate confusion of the two usages of the term “morphospecies”

    Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    Get PDF
    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results

    Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data

    Full text link
    3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution (64 μ\mum and 1.3 μ\mum pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 μ\mum ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in NeuroImaging (CNI), MICCAI'201

    An experimental survey of the production of alpha decaying heavy elements in the reactions of 238^{238}U +232^{232}Th at 7.5-6.1 MeV/nucleon

    Full text link
    The production of alpha particle decaying heavy nuclei in reactions of 7.5-6.1 MeV/nucleon 238^{238}U +232^{232}Th has been explored using an in-beam detection array composed of YAP scintillators and gas ionization chamber-Si telescopes. Comparisons of alpha energies and half-lives for the observed products with those of the previously known isotopes and with theoretically predicted values indicate the observation of a number of previously unreported alpha emitters. Alpha particle decay energies reaching as high as 12 MeV are observed. Many of these are expected to be from decay of previously unseen relatively neutron rich products. While the contributions of isomeric states require further exploration and specific isotope identifications need to be made, the production of heavy isotopes with quite high atomic numbers is suggested by the data.Comment: 12 pages, 12 figure

    Properties of Exotic Matter for Heavy Ion Searches

    Full text link
    We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z=-2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders.Comment: 10 pages, 4 figures, uses IOP style and epsf.sty, to be published in Journal of Physics, Proceedings of the International Symposium on Strangeness in Quark Matter 1997, April 14-18, Thera (Santorini), Hellas. Corrected typos, added comment about bag constant

    Laboratory Tests of Low Density Astrophysical Equations of State

    Full text link
    Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ\rho, and temperatures, TT, for evolving systems formed in collisions of 47 AA MeV 40^{40}Ar + 112^{112}Sn,124^{124}Sn and 64^{64}Zn + 112^{112}Sn, 124^{124}Sn. The yields of dd, tt, 3^{3}He, and 4^{4}He have been determined at ρ\rho = 0.002 to 0.032 nucleons/fm3^{3} and TT= 5 to 10 MeV. The experimentally derived equilibrium constants for α\alpha particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.Comment: 5 pages, 3 figure

    Formulation of the uncertainty relations in terms of the Renyi entropies

    Get PDF
    Quantum mechanical uncertainty relations for position and momentum are expressed in the form of inequalities involving the Renyi entropies. The proof of these inequalities requires the use of the exact expression for the (p,q)-norm of the Fourier transformation derived by Babenko and Beckner. Analogous uncertainty relations are derived for angle and angular momentum and also for a pair of complementary observables in N-level systems. All these uncertainty relations become more attractive when expressed in terms of the symmetrized Renyi entropies

    Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

    Get PDF
    In medium binding energies and Mott points for dd, tt, 3^3He and α\alpha clusters in low density nuclear matter have been determined at specific combinations of temperature and density in low density nuclear matter produced in collisions of 47AA MeV 40^{40}Ar and 64^{64}Zn projectiles with 112^{112}Sn and 124^{124}Sn target nuclei. The experimentally derived values of the in medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.Comment: 5 pages, 3 figure
    corecore