739 research outputs found

    Low-Density Self-Driven Electromagnetic Wheel: Comparison of Different Tracks

    Get PDF
    The rotation of a permanent magnetic multipole wheel near a conducting non-magnetic plate creates a time-varying magnetic field that can produce by induction both repulsive levitation and propulsion forces. We constructed such an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube Nd magnets attached to the rim of the wheel. The radial magnetic field on the outer rim of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field along the rim. When a conductive metal “track” is immersed in this area of strong reversing magnetic flux, the time-dependent flux produces eddy currents, generating both lift (levitation) and drag (propulsion) forces on the wheel’s magnets, measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the existing theoretical predictions. The results depend on the resistivity and thickness of the conducting plate and on the clearance between plate and magnets. Partial levitation was achieved with the current electrodynamic wheel. Lift force per unit magnet volume was found. In the future, the wheel will be upgraded by doubling the number of magnets. Increasing the density of the magnetic poles will double the frequency at which the magnetic field oscillates, and so the thrust/lift force at a given angular velocity, because the magnetic flux will reverse itself through the track at a faster rate. Electrodynamic wheels may have applications in the magnetic levitation based transportation, since multiple electrodynamic wheels could be used on a vehicle to produce by the same mechanism levitation, propulsion and guidance forces over a conductive track. Our configuration of a plate suspended above the rotating wheel can serve also as a model of noncontact conveyance of conductive plates in electrodynamic conveyor belts

    The APOGEE-2 Survey of the Orion Star Forming Complex: I. Target Selection and Validation with early observations

    Full text link
    The Orion Star Forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420 square degrees extent of the OSFC. When restricted to YSO candidates with H < 12.4, to ensure S/N ~100 for a six visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Liesawitz and 990 optical variables identified in the Pan-STARRS1 3π\pi survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We fill the remaining fibers with previously confirmed and new color-magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey's first year indicate that ~90% of the uniformly selected targets have radial velocities consistent with Orion membership.The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.Comment: Accepted for publication in ApJ

    A Catalog of Chandra X-ray Sources in the Carina Nebula

    Full text link
    We present a catalog of ~14,000 X-ray sources observed by the ACIS instrument on the Chandra X-ray Observatory within a 1.42 square degree survey of the Great Nebula in Carina, known as the Chandra Carina Complex Project (CCCP). This study appears in a Special Issue of the ApJS devoted to the CCCP. Here, we describe the data reduction and analysis procedures performed on the X-ray observations, including calibration and cleaning of the X-ray event data, point source detection, and source extraction. The catalog appears to be complete across most of the field to an absorption-corrected total-band luminosity of ~10^{30.7} erg/s for a typical low-mass pre-main sequence star. Counterparts to the X-ray sources are identified in a variety of visual, near-infrared, and mid-infrared surveys. The X-ray and infrared source properties presented here form the basis of many CCCP studies of the young stellar populations in Carina.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 29 pages, 11 figure

    TOI-150: A transiting hot Jupiter in the TESS southern CVZ

    Full text link
    We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14}\ M_{J},, R_{p}=1.38\pm0.04\ R_{J})orbitingamiddleagedstar() orbiting a middle-aged star (\log g=4.152^{+0.030}_{-0.043})intheTransitingExoplanetSurveySatellite(TESS)southerncontinuousviewingzone() in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone (\beta=-79.59^{\circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.Comment: 13 pages, 3 figures, 2 tables, accepted to ApJ

    Kepler-730: A hot Jupiter system with a close-in, transiting, Earth-sized planet

    Full text link
    Kepler-730 is a planetary system hosting a statistically validated hot Jupiter in a 6.49-day orbit and an additional transiting candidate in a 2.85-day orbit. We use spectroscopic radial velocities from the APOGEE-2N instrument, Robo-AO contrast curves, and Gaia distance estimates to statistically validate the planetary nature of the additional Earth-sized candidate. We perform astrophysical false positive probability calculations for the candidate using the available Kepler data and bolster the statistical validation by using radial velocity data to exclude a family of possible binary star solutions. Using a radius estimate for the primary star derived from stellar models, we compute radii of 1.1000.050+0.047 RJup1.100^{+0.047}_{-0.050}\ R_{Jup} and 0.140±0.012 RJup0.140\pm0.012\ R_{Jup} (1.57±0.13 R1.57\pm0.13\ R_{\oplus}) for Kepler-730b and Kepler-730c, respectively. Kepler-730 is only the second compact system hosting a hot Jupiter with an inner, transiting planet.Comment: 13 pages, 2 figures, 3 tables, published in ApJ

    A Pan-Carina YSO Catalog: Intermediate-Mass Young Stellar Objects in the Carina Nebula Identified Via Mid-Infrared Excess Emission

    Full text link
    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg^2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope Vela--Carina survey and the Two-Micron All Sky Survey. We model the 1--24 /mu m IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 Msun < m < 10 Msun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary dataset to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2x10^4 YSOs and a present-day star formation rate (SFR) of >0.008 Msun/yr. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.Comment: 23 pages, 11 figures, accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers, including a version of this article with high-quality figures and full electronic tables, are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html (through 2011 at least

    Characterization of low-mass companions to Kepler\textit{Kepler} objects of interest observed with APOGEE-N

    Full text link
    We report the characterization of 28 low-mass (0.02 M M20.25 M0.02\mathrm{~M_\odot}\le\mathrm{~M_{2}}\le0.25\mathrm{~M_\odot}) companions to Kepler\textit{Kepler} objects of interest (KOIs), eight of which were previously designated confirmed planets. These objects were detected as transiting companions to Sun-like stars (G and F dwarfs) by the Kepler\textit{Kepler} mission and are confirmed as single-lined spectroscopic binaries in the current work using the northern multiplexed Apache Point Observatory Galactic Evolution Experiment near-infrared spectrograph (APOGEE-N) as part of the third and fourth Sloan Digital Sky Surveys. We have observed hundreds of KOIs using APOGEE-N and collected a total of 43,175 spectra with a median of 19 visits and a median baseline of 1.9\sim1.9 years per target. We jointly model the Kepler\textit{Kepler} photometry and APOGEE-N radial velocities to derive fundamental parameters for this subset of 28 transiting companions. The radii for most of these low-mass companions are over-inflated (by 10%\sim10\%) when compared to theoretical models. Tidally locked M dwarfs on short period orbits show the largest amount of inflation, but inflation is also evident for companions that are well separated from the host star. We demonstrate that APOGEE-N data provides reliable radial velocities when compared to precise high-resolution spectrographs that enable detailed characterization of individual systems and the inference of orbital elements for faint (H>12H>12) KOIs. The data from the entire APOGEE-KOI program is public and presents an opportunity to characterize an extensive subset of the binary population observed by Kepler\textit{Kepler}.Comment: 98 pages (include 56 for the figure sets), 10 tables, 7 figures, 2 figure sets, accepted for publication in ApJ

    Kepler-503b: An Object at the Hydrogen Burning Mass Limit Orbiting a Subgiant Star

    Full text link
    Using spectroscopic radial velocities with the APOGEE instrument and Gaia distance estimates, we demonstrate that Kepler-503b, currently considered a validated Kepler planet, is in fact a brown-dwarf/low-mass star in a nearly circular 7.2-day orbit around a subgiant star. Using a mass estimate for the primary star derived from stellar models, we derive a companion mass and radius of 0.075±0.003 M0.075\pm0.003 \ M_{\odot} (78.6±3.1 MJup78.6\pm3.1 \ M_{Jup}) and 0.0990.004+0.006 R0.099^{+0.006}_{-0.004}\ R_{\odot} (0.960.04+0.06 RJup0.96^{+0.06}_{-0.04}\ R_{Jup}), respectively. Assuming the system is coeval, the evolutionary state of the primary indicates the age is 6.7\sim6.7 Gyr. Kepler-503b sits right at the hydrogen burning mass limit, straddling the boundary between brown dwarfs and very low-mass stars. More precise radial velocities and secondary eclipse spectroscopy with James Webb Space Telescope will provide improved measurements of the physical parameters and age of this important system to better constrain and understand the physics of these objects and their spectra. This system emphasizes the value of radial velocity observations to distinguish a genuine planet from astrophysical false positives, and is the first result from the SDSS-IV monitoring of Kepler planet candidates with the multi-object APOGEE instrument.Comment: Accepted for publication in ApJL, 12 pages, 3 figures, 2 table

    Light Curve Templates and Galactic Distribution of RR Lyrae Stars from Sloan Digital Sky Survey Stripe 82

    Full text link
    We present an improved analysis of halo substructure traced by RR Lyrae stars in the SDSS stripe 82 region. With the addition of SDSS-II data, a revised selection method based on new ugriz light curve templates results in a sample of 483 RR Lyrae stars that is essentially free of contamination. The main result from our first study persists: the spatial distribution of halo stars at galactocentric distances 5--100 kpc is highly inhomogeneous. At least 20% of halo stars within 30 kpc from the Galactic center can be statistically associated with substructure. We present strong direct evidence, based on both RR Lyrae stars and main sequence stars, that the halo stellar number density profile significantly steepens beyond a Galactocentric distance of ~30 kpc, and a larger fraction of the stars are associated with substructure. By using a novel method that simultaneously combines data for RR Lyrae and main sequence stars, and using photometric metallicity estimates for main sequence stars derived from deep co-added u-band data, we measure the metallicity of the Sagittarius dSph tidal stream (trailing arm) towards R.A.2h-3h and Dec~0 deg to be 0.3 dex higher ([Fe/H]=-1.2) than that of surrounding halo field stars. Together with a similar result for another major halo substructure, the Monoceros stream, these results support theoretical predictions that an early forming, smooth inner halo, is metal poor compared to high surface brightness material that have been accreted onto a later-forming outer halo. The mean metallicity of stars in the outer halo that are not associated with detectable clumps may still be more metal-poor than the bulk of inner-halo stars, as has been argued from other data sets.Comment: Submitted to ApJ, 68 pages, 26 figures, supplemental material (light curves, templates, animation) can be downloaded from http://www.astro.washington.edu/bsesar/S82_RRLyr.htm
    corecore