13 research outputs found

    Medication prescribing errors in a pediatric inpatient tertiary care setting in Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication errors (MEs) are among the most common types of medical errors and one of the most common and preventable causes of iatrogenic injuries. The aims of the present study were; (i) to determine the incidence and types of medication prescribing errors (MPEs), and (ii) to identify some potential risk factors in a pediatric inpatient tertiary care setting in Saudi Arabia.</p> <p>Findings</p> <p>A five-week retrospective cohort study identified medication errors in the general pediatric ward and pediatric intensive care unit (PICU) at King Abdulaziz Medical City (KAMC) through the physical inspection of physician medication orders and reviews of patients' files. Out of the 2,380 orders examined, the overall error rate was 56 per 100 medication orders (95% CI: 54.2%, 57.8%). Dose errors were the most prevalent (22.1%). These were followed by route errors (12.0%), errors in clarity (11.4%) and frequency errors (5.4%). Other types of errors were incompatibility (1.9%), incorrect drug selection (1.7%) and duplicate therapy (1%). The majority of orders (81.8%) had one or more abbreviations. Error rates were highest in prescriptions for electrolytes (17.17%), antibiotics (13.72%) and bronchodilators (12.97%). Medication prescription errors occurred more frequently in males (64.5%), infants (44.5%) and for medications with an intravenous route of administration (50.2%). Approximately one third of the errors occurred in the PICU (33.9%).</p> <p>Conclusions</p> <p>The incidence of MPEs was significantly high. Large-scale prospective studies are recommended to determine the extent and outcome of medication errors in pediatric hospitals in Saudi Arabia.</p

    Population pharmacokinetics of vancomycin in very low birth weight neonates

    Get PDF
    IntroductionVancomycin dosing in very low birth weight (VLBW) neonates is challenging. Compared with the general neonatal population, VLBW neonates are less likely to achieve the vancomycin therapeutic targets. Current dosing recommendations are based on studies of the general neonatal population, as only a very limited number of studies have evaluated vancomycin pharmacokinetics in VLBW neonates. The main aim of this study was to develop a vancomycin population pharmacokinetic model to optimize vancomycin dosing in VLBW neonates.MethodsThis multicenter study was conducted at six major hospitals in Saudi Arabia. The study included VLBW neonates who received vancomycin and had at least one vancomycin serum trough concentration measurement at a steady state. We developed a pharmacokinetic model and performed Monte Carlo simulations to develop an optimized dosing regimen for VLBW infants. We evaluated two different targets: AUC0–24 of 400–600 or 400–800 µg. h/mL. We also estimated the probability of trough concentrations &gt;15 and 20 µg/mL.ResultsIn total, we included 236 neonates, 162 in the training dataset, and 74 in the validation dataset. A one-compartment model was used, and the distribution volume was significantly associated only with weight, whereas clearance was significantly associated with weight, postmenstrual age (PMA), and serum creatinine (Scr).DiscussionWe developed dosing regimens for VLBW neonates, considering the probability of achieving vancomycin therapeutic targets, as well as different toxicity thresholds. The dosing regimens were classified according to PMA and Scr. These dosing regimens can be used to optimize the initial dose of vancomycin in VLBW neonates

    Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit

    No full text
    Objective. Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design. Double-blind, randomized control trial (RCT). Setting. Pediatric multidisciplinary ICU in tertiary care center. Patients. Thirty-six pediatric patients 2–14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions. Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results. This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo (p=0.127). Conclusions. Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435

    Multicentre randomised double-blinded placebo-controlled trial of favipiravir in adults with mild COVID-19

    No full text
    Introduction A novel coronavirus, designated SARS-CoV-2, caused an international outbreak of a respiratory illness, termed COVID-19 in December 2019. There is a lack of specific therapeutic agents based on evidence for this novel coronavirus infection; however, several medications have been evaluated as a potential therapy. Therapy is required to treat symptomatic patients and decrease the virus carriage duration to limit the communitytransmission.Methods and analysis We hypothesise that patients with mild COVID-19 treated with favipiravir will have a shorter duration of time to virus clearance than the control group. The primary outcome is to evaluate the effect of favipiravir on the timing of the PCR test conversion from positive to negative within 15 days after starting the medicine.Adults (&gt;18 years, men or nonpregnant women, diagnosed with mild COVID-19 within 5 days of disease onset) are being recruited by physicians participating from the Ministry of National Guard Health Affairs and the Ministry of Health ethics committee approved primary healthcare centres. This double-blind, randomised trial comprises three significant parts: screening, treatment and a follow-up period. The treating physician and patients are blinded. Eligible participants are randomised in a 1:1 ratio to either the therapy group (favipiravir) or a control group (placebo) with 1800 mg by mouth two times per day for the first day, followed by 800 mg two times per day for 4–7 days. Serial nasopharyngeal/oropharyngeal swab samples are obtained on day 1 (5 days before therapy). On day5±1 day, 10±1 day, 15±2 days, extra nasopharyngeal/oropharyngeal PCR COVID-19 samples are requested.The primary analysis population for evaluating both the efficacy and safety outcomes will be a modified intention to treat population. Anticipating a 10% dropout rate, we expect to recruit 288 subjects per arm. The results assume that the hazard ratio is constant throughout the study and that the Cox proportional hazard regression is used to analyse the data.Ethics and dissemination The study was approved by the King Abdullah International Medical Research Centre Institutional Review Board (28 April 2020) and the Ministry of Health Institutional Review Board (1 July 2020). Protocol details and any amendments will be reported to https://clinicaltrials.gov/ct2/show/NCT04464408. The results will be published in peer-reviewed journals.Trial registration number National Clinical Trial Registry (NCT04464408)

    Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial

    No full text
    Abstract Background It had been more than 5 years since the first case of Middle East Respiratory Syndrome coronavirus infection (MERS-CoV) was recorded, but no specific treatment has been investigated in randomized clinical trials. Results from in vitro and animal studies suggest that a combination of lopinavir/ritonavir and interferon-β1b (IFN-β1b) may be effective against MERS-CoV. The aim of this study is to investigate the efficacy of treatment with a combination of lopinavir/ritonavir and recombinant IFN-β1b provided with standard supportive care, compared to treatment with placebo provided with standard supportive care in patients with laboratory-confirmed MERS requiring hospital admission. Methods The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. Hospitalized adult patients with laboratory-confirmed MERS will be enrolled in this recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The trial is initially designed to include 2 two-stage components. The first two-stage component is designed to adjust sample size and determine futility stopping, but not efficacy stopping. The second two-stage component is designed to determine efficacy stopping and possibly readjustment of sample size. The primary outcome is 90-day mortality. Discussion This will be the first randomized controlled trial of a potential treatment for MERS. The study is sponsored by King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. Enrollment for this study began in November 2016, and has enrolled thirteen patients as of Jan 24-2018. Trial registration ClinicalTrials.gov, ID: NCT02845843. Registered on 27 July 2016

    Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial

    No full text
    Abstract The MIRACLE trial (MERS-CoV Infection tReated with A Combination of Lopinavir/ritonavir and intErferon-β1b) investigates the efficacy of a combination therapy of lopinavir/ritonavir and recombinant interferon-β1b provided with standard supportive care, compared to placebo provided with standard supportive care, in hospitalized patients with laboratory-confirmed MERS. The MIRACLE trial is designed as a recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The aim of this article is to describe the statistical analysis plan for the MIRACLE trial. The primary outcome is 90-day mortality. The primary analysis will follow the intention-to-treat principle. The MIRACLE trial is the first randomized controlled trial for MERS treatment. Trial registration ClinicalTrials.gov, NCT02845843. Registered on 27 July 2016
    corecore