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Introduction: Vancomycin dosing in very low birth weight (VLBW) neonates is
challenging. Compared with the general neonatal population, VLBW neonates are
less likely to achieve the vancomycin therapeutic targets. Current dosing
recommendations are based on studies of the general neonatal population, as only
a very limited number of studies have evaluated vancomycin pharmacokinetics in
VLBW neonates. The main aim of this study was to develop a vancomycin
population pharmacokinetic model to optimize vancomycin dosing in VLBW neonates.
Methods: This multicenter study was conducted at six major hospitals in Saudi Arabia.
The study included VLBW neonates who received vancomycin and had at least one
vancomycin serum trough concentration measurement at a steady state. We
developed a pharmacokinetic model and performed Monte Carlo simulations to
develop an optimized dosing regimen for VLBW infants. We evaluated two different
targets: AUC0–24 of 400–600 or 400–800 µg. h/mL. We also estimated the
probability of trough concentrations >15 and 20 µg/mL.
Results: In total, we included 236 neonates, 162 in the training dataset, and 74 in the
validation dataset. A one-compartment model was used, and the distribution volume
was significantly associated only with weight, whereas clearance was significantly
associated with weight, postmenstrual age (PMA), and serum creatinine (Scr).
Discussion: We developed dosing regimens for VLBW neonates, considering the
probability of achieving vancomycin therapeutic targets, as well as different toxicity
thresholds. The dosing regimens were classified according to PMA and Scr. These
dosing regimens can be used to optimize the initial dose of vancomycin in VLBW
neonates.
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Introduction

Late-onset neonatal sepsis is a major cause of morbidity and mortality in newborns

worldwide, with a mortality rate of approximately 15% in very low birth weight (VLBW)
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TABLE 1 Vancomycin dosing regimens from neonatal dosing references
commonly used in participating hospitals.

Reference PMAa

(weeks)
PNAb

(days)
Dose

(mg/kg/
dose)

Interval
(hours)

NeoFax ≤29 ≤14 10–15 18

>14 12

30–36 ≤14 10–15 12

>14 8

37–44 ≤7 10–15 12

>7 8

≥45 All 10–15 6

Lexicomp
Age directed
dosing

PMAa (weeks) PNAb (days) Dose
(mg/kg/dose)

Interval
(hours)

≤29 ≤21 15 18

> 21 15 12

30 to <37 ≤14 15 12

>14 15 8

37–45 ≤7 15 12

>7 15 8

Lexicomp
Kidney function
based dosingd

GAc (weeks) Scr (mg/dl)

≤28 <0.5 15 12

0.5–0.7 20 24

0.8–1 15 24

1.1–1.4 10 24

>1.4 15 48

>28 <0.7 15 12

0.7–0.9 20 24
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neonates (birth weight <1,500 g) (1–3). Vancomycin is a

glycopeptide antibiotic frequently used to treat nosocomial gram-

positive infections in neonates when methicillin-resistant

Staphylococcus aureus (MRSA) or coagulase-negative staphylococci

(MRCONS) are suspected. Vancomycin is considered one of the

most common antimicrobial agents used in neonatal intensive care

units (NICU) because of increased mortality and morbidity rates

due to neonatal sepsis, compared with sepsis in children (4, 5).

The optimal vancomycin dose should target an area under curve/

minimum inhibitory concentration (AUC0−24/MIC) of 400 µg.h/

ml, while minimizing higher AUCs0−24/MIC (>800 µg.h/ml) and

troughs (>20 µg/ml) (6–10). The new IDSA treatment guidelines

recommend targeting an AUC0−24 of 400–600 µg.hr/ml (assuming

an MIC of 1 µg/ml) and no longer recommends trough guided

monitoring. Although vancomycin has been used in clinical

practice for more than 50 years, dosing in neonates remains

challenging for many reasons. Most notably, these include a lack

of consensus on the optimal dosing and a narrow therapeutic

index (5, 10, 11–14). In addition, the rapidly changing

pharmacokinetics in neonates are mainly related to changes in

body water and organ maturation. Previous studies have reported

that the major predictors of vancomycin pharmacokinetics in

neonates include body weight, maturation [as indicated by

postmenstrual age (PMA), gestational age (GA), and postnatal age

(PNA)], and serum creatinine (Scr) (11, 12, 15).

Optimizing vancomycin dosing is even more challenging in

VLBW neonates than in the general neonatal population and older

pediatric patients. VLBW neonates exhibit limited renal elimination

and higher extracellular fluid volume compared to normal weight

neonates (16, 17). In our previous study, we found that VLBW

neonates were less likely to achieve a vancomycin therapeutic target

of an AUC0−24/MIC > 400 µg.h/ml compared to neonates born with

a larger body weight (18). Similar findings were observed in the

study by Stone et al. (19). This indicates that current dosing

recommendations are not optimal for the VLBW neonates and

there is a need for specific dosing regimens in this patient

population. Most published pharmacokinetic models are in the

general neonatal population. To date, only two studies evaluating

vancomycin pharmacokinetics and dosing in VLBW neonates have

been published (16, 17). Both of these studies included a very small

sample size (<20 patients). Therefore, pharmacokinetic models must

be further explored in this unique population.

Nevertheless, early optimization of vancomycin dosing to

rapidly achieve adequate antibiotic exposure is extremely

important. This will increase efficacy, minimize toxicity, and

avoid bacterial resistance, particularly when treating invasive

MRSA infections. Therefore, the main aim of this study was to

develop a vancomycin population pharmacokinetic model to

optimize dosing in VLBW neonates.
1–1.2 15 24

1.3–1.6 10 24

>1.6 15 48

aPMA, postmenstrual age. PMA is gestational age plus postnatal age.
bPNA, postnatal age.
cGA, Gestational age.
dKidney function based dosing: a loading dose of 20 mg/kg is recommended. It

was designed to achieve target trough concentrations of 5 to 10 µg/ml.
Methods

Patients and data collection

This multicenter observational study was conducted in six

major hospitals in Saudi Arabia. Data were retrospectively
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collected from the electronic medical records of the following

hospitals: King Saud University Medical City in Riyadh, King

Faisal Specialist Hospital in Riyadh, National Guard Hospital in

Riyadh, King Faisal Specialist Hospital in Jeddah, Prince Sultan

Military Medical City in Riyadh, and Armed Forces Hospital

Southern Region in Abha. Data were retrieved for VLBW

neonates (0–30 days old) who were admitted to the NICU and

received vancomycin for proven or suspected MRSA or

MRCONS infections. Patients were included if they received

vancomycin for more than 48 h and had at least one vancomycin

serum trough concentration measurement in a steady state. The

collected data included PNA, PMA, weight, Scr, vancomycin

dose, frequency and concentrations. For vancomycin initial

dosing recommendations, online pediatric and neonatal Lexi-

Drugs® (Lexicomp, Ohio, USA) (20) was the main neonatal

dosing reference at National Guard Hospital, whereas all other

participating hospitals relied mainly on Micromedex NeoFax

(IBM Corp., Armonk, NY, United States) (21) (Table 1).

Subsequent dose adjustments were guided by the vancomycin

trough concentrations. In King Saud University Medical City,

both vancomycin peak and trough concentrations were obtained

for therapeutic drug monitoring. In all other hospitals, the
frontiersin.org
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practice was to collect trough concentrations only. Peak samples

were collected 1 h after the end of infusions, and trough

concentrations were collected 30 min before the next dose in a

steady state. Exclusion criteria were: renal failure, receiving

hemodialysis, missing dosing information and those sampled

before the steady state were excluded. The study was IRB

approved in all six participating centers.
Analytical assay

Three different validated methods were used for the analytical

assay, as each hospital had a different system. One hospital used a

chemiluminescent microparticle immunoassay with an Architect

i4000SR immunoassay analyzer (Abbott), two hospitals used the

kinetic interaction of microparticles in solution (KIMS) with a

Cobas c system (Roche/Hitachi), and three hospitals used the

homogeneous particle-enhanced turbidimetric inhibition

immunoassay (PETINIA) with an Alinity c analyzer (Abbott).

The assay range for the Architect immunoassay is from 0.5 to

83 µg/ml, the range for the KIMS assay is 4–80 µg/ml, and the

range for the PETINIA is 1.4–100 µg/ml. For the Scr assays, four

centers used the Jaffe method, and two centers used the

enzymatic method. The following formula was used to convert

the enzymatic assay to the Jaffe method (22):

Jaffe concentration ¼ 0:122þ Enzymatic concentration
1:05
Population pharmacokinetics

We split the data randomly into the training (70%) and

validation (30%) data sets. Data splitting was performed using R

statistical software. Pharmacokinetic modeling was performed

using the Monolix software (2020R1) with the stochastic

approximation expectation maximization algorithm.
Base model

First, we developed a structural model for vancomycin. This

included testing one- and two-compartment models with linear

and nonlinear elimination. For the between-subject variability in

pharmacokinetic parameters, we used the following lognormal

distribution:

pi ¼ p: exp (hi),

where pi is the individual pharmacokinetic estimate for the ith

individual, p is the median value of the pharmacokinetic

parameter, and hi is the standard deviation for the ith individual

with a mean of 0 and variance ω2. For residual unexplained

variability, we tested different statistical models, including the

constant, proportional, and combined error models. As different
Frontiers in Pediatrics 03
assays were used for vancomycin, we tested having different

residual variability models accordingly.
Covariates

After we developed the base model, we evaluated the effect of

covariates on pharmacokinetic parameters. We tested the effects

of postnatal age, gestational age, PMA, weight, height, sex, Scr,

presence of congenital heart disease, and VLBW vs. extremely

low birth weight (ELBW) on all pharmacokinetic parameters.

Covariates were tested by plotting the post hoc individual

pharmacokinetic parameters (empirical Bayesian estimates)

against covariates to identify possible correlations. Testing was

performed stepwise using a likelihood ratio rest. The significance

level was set at p < 0.05. The effect of continuous covariates was

modeled using a power function as follows:

Pi ¼ P � Xi

X

� �b

,

where Pi is the individual pharmacokinetic parameter for the ith

individual, P is the typical value of the pharmacokinetic

parameter in the population, Xi is the covariate value for the ith

individual, and Xi is the population mean of the covariate. The

exponents for the effects of weight on total body clearance (Cl)

and the volume of distribution (V) were fixed at 0.75 and 1,

respectively (23–25). To determine the effect of age on Cl, we

tested both power, linear, and sigmoidal functions to account for

maturation (25, 26). The sigmoidal function is expressed as follows:

FPMA ¼ PMAhill

PMAhill þ TMAhill
50

,

where hill is the Hill coefficient for clearance, and TMA50 is the

PMA, where Cl is 50% of the mature value.
Model evaluation

Model evaluation and selection were guided by the objective

function value, physiological plausibility, and standard diagnostic

plots. The relative standard error of the pharmacokinetic

estimates was also assessed, with an optimal value of <30%.
Validation

The final population pharmacokinetic model was evaluated

using the validation dataset. Model performance was assessed

using simulation diagnostics, Visual Predictive Check (VPC), and

Normalized Prediction Distribution Error (NPDE) (27). The null

hypothesis for the NPDE is that it follows a normal distribution,

with a mean of 0 and a standard deviation of 1. The VPC is
frontiersin.org
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TABLE 2 Baseline demographics.
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based on 1,000 dataset simulations, followed by a comparison

between the observed data and the simulated concentrations.

Training data set

(N = 162)
Validation data set

(N = 74)

Mean (sd, minimum-
maximum)

Mean (sd, minimum-
maximum)

Age (days) 10.7 (7.5, 1–30) 11.8 (9.0, 2–30)

PMA (weeks) 29.8 (3.15, 22–39) 30.7 (3.4, 24–42)

GA (weeks) 28.0 (2.9, 22–35) 28.4 (2.8, 23–38)

Gender Male: 45% Male: 49%

Female: 32% Female: 34%

Missing: 22% Missing: 18%

ELBW 59% 55%

Birth weight (Kg) 0.95 (0.27, 0.46–1.5) 1.0 (0.26, 0.5–1.5)

Weight (Kg) 1.0 (0.29, 0.46–1.7) 1.1 (0.3, 0.5–2.2)

Scr (mg/dl) 0.65 (0.22, 0.2–1.5) 0.62 (0.23, 0.15–1.4)

Total daily dose
(mg/kg)

22 (8, 7.5–55) 24.1 (11.5, 9–68)

Congenital heart
disease

26% 37%

Culture confirmed
infections

60 (37%) 25 (33%)
Simulation

The final model was used to perform Monte Carlo simulations

to determine the optimal vancomycin dose. We evaluated various

doses ranging from to 10–20 mg/kg in 2.5 mg/kg increments

every 6, 8, 12, 18, and 24 h. The final population

pharmacokinetic model with the distribution of the

pharmacokinetic parameters was embedded into the “Simulx”

package in R. Simulx is part of the “mlxr” package in R and

can be used to simulate the time concentration profile for

different pharmacokinetic models (Lixoft, Antony, France,

http://simulx.webpopix.org/). To ensure that the distribution of

the significant covariates was identical to our patient population,

we replicated our dataset 40 times (40 × 236 = 9,440). We

simulated the time-concentration profiles for all 9,440 cases.

We evaluated two targets in the simulations: (1) AUC0−24 of

400–600 µg.h/ml, as recommended in the IDSA treatment

guidelines, (10) and (2) the less conservative target of AUC0−24

of 400–800 µg.h/ml, based on a prior study in pediatrics

demonstrating increased nephrotoxicity for AUC0−24 > 800 µg.h/

ml (28). We also estimated the probability of both trough levels

>5 µg/ml and 20 µg/ml for each dosing regimen. Here, we

considered troughs as the secondary marker for nephrotoxicity,

as higher trough concentrations are also associated with
FIGURE 1

Correlation between covariates and Cl. Top figure is correlation between PMA a
and Cl normalized by bodyweight.
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nephrotoxicity (29–31). Prior studies in adults indicate risk of

nephrotoxicity is approximately 15% for troughs between 15 and

20 µg/ml and increases to approximately 30% for troughs >20 µg/

ml (30). Therefore, troughs >20 µg/ml should be always avoided,

while troughs >15 µg/ml should be minimized if possible, as

some patients can achieve a vancomycin therapeutic target of an

AUC0−24 400–600 µg.h/ml at troughs <15 µg/ml (12, 30–32).
nd Cl normalized by bodyweight, bottom figure is correlation between Scr
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Results

In total, we included 236 patients: 162 in the training dataset,

and 74 in the validation dataset. The total number of

observations was 214 for the training dataset, and 97 for the

validation dataset. Out of the 236 patients 36% had a culture

confirmed infection. Approximately 58% of our patient

population were extremely low birth weight (59% in the training

data set and 55% in the validation data set). Both the training

and validation data sets were similar in terms of bodyweight,

PMA and Scr. The full baseline demographics of both datasets

are shown in Table 2.
TABLE 3 Pharmacokinetic estimates for the final population
pharmacokinetic model.

Estimate RSE%
V (L) 0.81 6.6%

IIV V 24% 26%

Cl (L/hr) 0.09 11%

IIV Cl 28% 11%

Hill coefficient for clearance 4.42 19%

TMA50 (weeks) 26.3 7%

Exponent of Scr on Cl 0.48 19%

Residual variability b 0.3 9.9%

V, volume of distribution; IIV, interindividual variability; Cl, total body clearance;

TMA, is the PMA at which CL is 50% of the mature value; Scr, serum creatinine;

b, proportional error; RSE, relative standard error.
Population pharmacokinetics

Vancomycin pharmacokinetic data were best described using a

one-compartment model with linear elimination and a

proportional error model. Significant covariates identified were

weight for volume of distribution (V) and weight, Scr, and PMA

for clearance (Cl). Bodyweight was scaled to the median

bodyweight of 0.93 kg, and the exponents for the effect of weight

on V and Cl were fixed at 1 and 0.75 (23, 25, 26). The effect of

PMA was best described using a sigmoidal function. The typical

Cl value for a VLBW neonate weighing 0.93 kg, PMA equal to

26 weeks, and Scr of 0.6 mg/dl was 0.09 L/h, while the typical V
FIGURE 2

Diagnostic plot for observed concentrations vs. predicted concentrations, figu
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value for a VLBW neonate weighing 0.93 kg was 0.81 L. The

formulas below describe the predicted values of Cl and V:

V ¼ 0:81� Weight
0:93

� �

Cl¼ 0:09� Weight
0:93

� �0:75

� 0:6
serum creatinine

� �0:48

� PMA4:42

PMA4:42þ 26:34:42

Figure 1 shows the correlation between Cl normalized by body

weight vs. Scr and PMA. The results of the final model are

presented in Table 3. Diagnostic plots are shown in Figures 2–4.
re on left is population predictions, figure on right is individual predictions.
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FIGURE 3

Population weighed residuals (top left), individual weighed residuals plot (top right) and normalized prediction distribution error plot (bottom left) for the
final population pharmacokinetic model.

Alsultan et al. 10.3389/fped.2023.1093171
Model validation

The validation dataset contained 97 observations from 74

participants. The diagnostic plots are shown in Figures 5

(VPC) and Figure 6 (NPDE). For the VPC, the observed and

predicted medians and percentiles were similar. The mean

NPDE was 0.043, and the standard deviation was 1.1, indicating

that the model had limited bias and captured most of the data

variability.
Simulation

Simulations were performed for various dosing regimens

based on the final population pharmacokinetic model. The

simulations were performed for different age and Scr groups as

follows: PMA above and below 29 weeks and Scr < 0.6, from 0.6–

0.9, and >0.9–1.2 mg/dl, for a total of six groups. There were

only five patients with Scr > 1.2 mg/dl; therefore, the simulations

were capped at 1.2 mg/dl. The range for Scr, PMA and weight in

the simulation data set was: Scr from 0.2–1.2 mg/dl, PMA from

22 to 42 weeks and for bodyweight was from 0.46 to 2.2 kg.

Table 4 shows the simulations for selected dosing regimens; we

only presented the doses that meet these criteria: probability of

AUC0−24 > 400 µg/h/ml is >60%, and probability of AUC0−24 >
Frontiers in Pediatrics 06
800 µg.h/ml or trough >20 µg/ml is <10% to avoid

nephrotoxicity. For each group, we identified 2–4 dosing

regimens that meet these criteria. Dose selection would depend

on the selected target: the narrower target of AUC0−24 which is

equal to 400–600 µg.h/ml, or the wider target of AUC0−24 which

is equal to 400–800 µg.h/ml.

Table 5 shows the recommended optimal dose depending on

the selected target (400–600 or 400–800 µg.h/ml). The

recommend doses to maintain an AUC0−24 of 400–600 µg.h/ml

are expected to achieve the therapeutic target in more than 60%

of patients. If we select the wider range of 400–800 µg.h/ml, the

recommended doses would achieve the target in more than 80%

of patients. However, the 400–800 µg.h/ml target would require

higher doses and may increase the probability of elevated trough

concentrations and AUCs. The only exception was for neonates

with PMA > 29 weeks and Scr < 0.6 mg/dl, the highest achieved

probabilities were 56% for the target AUC0−24 of 400–600 µg.h/

ml and 74% for the target AUC0−24 of 400–800 µg.h/ml with the

selected dosing regimen.
Discussion

Vancomycin, a drug with a narrow therapeutic window, is

commonly used to treat life-threatening infections in
frontiersin.org
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FIGURE 4

Qq plot and histogram of the individual weighed residuals (left) and normalized prediction errors (right).
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neonates, such as MRSA. Previous clinical studies have

demonstrated that vancomycin efficacy is maximized at

AUC0−24/MIC > 400 µg.h/ml (33–35). Vancomycin dosing in

VLBW patients is challenging. In this study, we developed

a population pharmacokinetic model and identified the

optimal initial dose for the VLBW neonate population. The

significant covariates identified in our analysis were weight

for V and weight, Scr, and PMA for Cl, consistent with

prior studies in neonates (36). Also, our estimates for V

and Cl are within range of previous studies (36).

The most commonly used tertiary dosing references

present vancomycin dosing recommendations for neonates

considering only one or two of these variables. For

example, Micromedex NeoFax recommends dosing based on

a combination of PMA and PNA, pediatric and neonatal

Lexicomp recommends two different dosing strategies, one

based on a combination of PMA and PNA and the other

based on a combination of GA and Scr (Table 1). As a

result, the daily doses can differ widely by up to 50%

between these studies. Studies have reported that the

probability of achieving vancomycin therapeutic targets in

neonates with these empiric dosing regimens is only 20%–

50% (37).
Frontiers in Pediatrics 07
To date, only two studies with very small sample size have

evaluated the optimal vancomycin dosing in VLBW neonates

(16, 17). Kato et al. (16) recommended a vancomycin dose of

10 mg/kg every 8 h as the initial dosage regimen for

vancomycin in VLBW neonates. This model predicted

vancomycin therapeutic target achievement in 86.7% of

neonates. However, they developed their model based on data

from only 10 VLBW neonates, and the simulations were not

divided into categories according to Scr and PMA. The major

difference between our findings and the Kato et al. model

is that for most groups, except PMA > 29 weeks and low

Scr < 0.6 mg/dl, we recommend against three times daily dosing,

which would lead to elevated trough levels >20 µg/ml, possibly

increasing the risk of nephrotoxicity. Sasano et al. (17)

constructed a population pharmacokinetic model for

vancomycin dosing based on data from 19 VLBW neonates and

infants. They recommended a dose of 5–7.5 mg/kg/doseevery

12 h, especially when Scr > 0.6 mg/dl. The doses recommended

by Sasano et al. are lower, compared with our results and those

of other references, that is mainly because they evaluated a

lower target range of AUC0−24 267–467 µg.h/ml. In our

simulations, the selected doses largely depended on the target

(AUC0−24 range of 400–600 or 400–800 µg.h/ml). Ideally, for
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FIGURE 5

Visual predictive check (VPC) of our final model applied to the validation data set. The solid lines represent the 10th, 50th and 90th percentiles of
observed data. The shaded regions represent the 90% confidence interval around the 10th, 50th and 90th percentiles of simulated data. The circles
are observed concentrations.
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each dose, target attainment should be approximately90%, and

the probability of achieving toxic concentrations should be

<10% (38). However, this would be challenging given the high

variability in vancomycin pharmacokinetics in VLBW neonates

and the narrow target for vancomycin (AUC0−24 400–600 µg.h/

ml). When using the wider target of AUC0−24 400–800 µg.h/ml,

dosing regimens could achieve the therapeutic target in 80–90%

of patients. The upper cutoff of AUC0−24 800 µg.h/ml was

based on a large previous study by Le et al. (9) in a pediatric

population.

Notably, the pharmacokinetic/pharmacodynamic (PK/PD)

target of vancomycin is mainly based on studies in

adults extrapolated to pediatric and neonatal patients. In

neonates, clinical studies identifying PK/PD targets and

toxicity thresholds are lacking. Nephrotoxicity incidence in

neonates is low (0.03%–6%) (39–41). Madigan et al. (41)

identified probable vancomycin-related nephrotoxicity in only

two out of 57 VLBW neonates. Some studies have attempted

to assess the correlation between vancomycin exposure

(trough and/or AUC) and nephrotoxicity; however, causal

relationships are difficult to identify given the small number

of events in these studies. Bhargava et al. (39) found a

significant correlation between vancomycin trough

concentration and nephrotoxicity. However, only three out
Frontiers in Pediatrics 08
of 110 subjects developed nephrotoxicity in this study. On

the other hand, Viel-Thériault et al. (42) noted

nephrotoxicity in 6% of patients, but the authors could not

identify a correlation between vancomycin trough and

nephrotoxicity. In a study by Tang et al.(43), increasing

AUC0−24 was associated with an increase in nephrotoxicity.

The authors identified a cutoff of AUC0−24 > 485 µg.h/ml as

a predictor of nephrotoxicity in neonates. However, only

seven out of 182 neonates developed nephrotoxicity in this

study. Given the small number of nephrotoxicity events

in these studies, it was difficult to draw meaningful

conclusions regarding the correlation between vancomycin

exposure and nephrotoxicity.

To the best of our knowledge, this is the largest study to

evaluate vancomycin pharmacokinetics in neonates with

VLBW. However, the limitations of our study include its

retrospective nature; all data were collected from one

country, and the pharmacokinetic model was built

using only 1–2 samples per patient. Therefore, it is

important for any center to validate any model to ensure

that it fits the patient population before implementation in

practice, as our model might not necessarily be

generalizable to other populations. The evaluated targets

were mainly based on data from adults, not neonates. Our
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FIGURE 6

Normalized prediction distribution error (NPDE) plot of our final model applied to the validation data set.

TABLE 4 Summary statistics of the predicted AUC and trough concentrations and Monte Carlo simulations for various dosing regimens of vancomycin in
VLBW neonates.

PMA
(wks)

Scr
(mg/dl)

Dose AUC0−24 mean
(sd) µg.h/ml

Trough mean
(sd) µg/ml

AUC0−24
400–600 µg.h/ml

AUC0−24
400–800 µg.h/ml

Trough >
15 µg/ml

≤29 <0.6 15 mg/kg q12h 440 (107) 10.5 (3.43) 53% 61% 11%

17.5 mg/kg q12ha 513 (125) 12.2 (4) 62% 80% 23%

20 mg/kg q12h 586 (143) 14 (4.6) 50% 84% 38%

0.6–0.9 17.5 mg/kg q18h 451 (116) 10.2 (3.8) 55% 65% 10%

20 mg/kg q18h 515 (133) 11.6 (4.3) 58% 78% 20%

15 mg/kg q12ha 523 (118) 13.3 (3.64) 63% 84% 28%

> 0.9 to1.2 15 mg/kg q18h 450 (108) 10.8 (3.5) 56% 70% 27%

17. 5 mg/kg q18ha 525 (127) 12.5 (4.1) 60% 83% 27%

20 mg/kg q24h 480 (127) 10.3 (4.2) 56% 70% 13%

>29 <0.6 12.5 mg/kg q8h 452 (115) 12.5 (1) 56% 66% 26%

20 mg/kg q12h 494 (131) 11 (4.3) 56% 74% 17%

0.6–0.9 15 mg/kg q12h 453 (106) 11 (3.4) 57% 69% 12%

17.5 mg/kg q12ha 528 (124) 12.8 (4) 60% 82% 28%

> 0.9 to1.2 17.5 mg/kg q12h 440 (116) 9.8 (3.8) 51% 63% 3%

20 mg/kg q18ha 503 (133) 11.2 (4.3) 76% 76% 18%

15 mg/kg q12ha 513 (119) 12.9 (3.7) 58% 83% 27%

For all doses, the probability of an AUC0−24 > 800 µg. h/ml and/or trough >20 µg/ml is less than 10%.
aThe selected recommended dose to achieve the therapeutic target of an AUC0-24 of 400–600 µg.h/ml in more than 60% of patients or to achieve the wider range of

400–800 µg.h/ml in more than 80% of patients.

Alsultan et al. 10.3389/fped.2023.1093171
study included only a few patients with Scr > 1.2 mg/dl;

hence, our model does not apply to this population. Our

study did not evaluate the clinical outcome for the patients.

It is important for future studies to assess the correlation
Frontiers in Pediatrics 09
between vancomycin concentration and microbiologic and

clinical outcome.

In conclusion, our population-specific model-based dosing

approach shows promise for improving vancomycin target
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TABLE 5 Recommended doses using our model depending on the target
selected.

PMA
(weeks)

Scr
(mg/dl)

Recommended dose
if targeting AUC0−24
400–600 µg. h/ml

Recommended dose
if targeting AUC0−24
400–800 µg. h/ml

≤29 <0.6 17.5 mg/kg q12h 17.5 mg/kg q12h

0.6–0.9 15 mg/kg q12h 15 mg/kg q12h

0.9–1.2 17.5 mg/kg q18h 17.5 mg/kg q18h

>29 <0.6 12.5 mg/kg q8h 20 mg/kg q12h

0.6–0.9 17.5 mg/kg q12h 17.5 mg/kg q12h

0.9–1.2 20 mg/kg q18h 15 mg/kg q12h

Alsultan et al. 10.3389/fped.2023.1093171
attainment in neonates with VLBW. Prospective clinical studies are

needed to evaluate the benefits of this dosing regimen.
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