254 research outputs found

    H-NS Regulation of IraD and IraM Antiadaptors for Control of RpoS Degradation

    Get PDF
    International audienceRpoS, the master sigma factor during stationary phase and under a variety of stress conditions, is regulated at multiple levels, including regulated degradation. Degradation is dependent upon ClpXP and the RssB adaptor protein. H-NS, a nucleoid-associated protein, affects the regulated degradation of RpoS; in the absence of H-NS, RpoS is stable. The mechanisms involved in this regulation were not known. We have found that H-NS inhibits the expression of iraD and iraM, the genes coding for two antiadaptor proteins that stabilize RpoS when overexpressed. The regulation by H-NS of iraM is independent from the previously demonstrated regulation by the PhoP/PhoQ two-component system. Moreover, differences in the behavior of several hns alleles are explained by a role for StpA, an H-NS-like protein, in the regulation of RpoS stability. This finding parallels recent observations for a role of StpA in regulation of RpoS stability in Salmonella

    Sonoelastography of the Shoulder: A narrative review

    Get PDF
    Sonoelastography is a relatively new non-invasive imaging tool to assess the in vivo qualitative and quantitative biomechanical properties of various tissues. Two types of sonoelastography (SE) are commonly explored: strain and shear wave. Sonoelastography can be used in multiple medical subspecialties to assess pathological tissular changes by obtaining mechanical properties, shear wave speed, and strain ratio data. Although there are various radiological imaging methods, such as MRI or CT scan, to assess musculoskeletal structures (muscles, tendons, joint capsules), SE is more accessible since this approach is of low cost and does not involve radiation. As of 2018, SE has garnered promising data in multiple studies. Preliminary clinico-radiological correlations have been established to bridge tissue biomechanical findings with their respective clinical pathologies. Specifically, concerning the shoulder complex, recent findings have described mechanical tissue changes in shoulder capsulitis. The long head of the biceps and supraspinatus SE were among the recently studied structures with conditions regarding impingement, tendinosis, and tears. Since ultrasonography has established itself as an important tool in shoulder evaluation, it completes the history and physical examination skills of the clinicians. This study will provide an update on the most recent findings on SE of shoulder structures

    Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes

    Get PDF
    The widely used quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases, resulting in irreversible topoisomerase cleavage complexes (TOPcc). Whereas the excision repair pathways of TOPcc in eukaryotes have been extensively studied, it is not known whether equivalent repair pathways for prokaryotic TOPcc exist. By combining genetic, biochemical, and molecular biology approaches, we demonstrate that exonuclease VII (ExoVII) excises quinolone-induced trapped DNA gyrase, an essential prokaryotic type IIA topoisomerase. We show that ExoVII repairs trapped type IIA TOPcc and that ExoVII displays tyrosyl nuclease activity for the tyrosyl-DNA linkage on the 5′-DNA overhangs corresponding to trapped type IIA TOPcc. ExoVII-deficient bacteria fail to remove trapped DNA gyrase, consistent with their hypersensitivity to quinolones. We also identify an ExoVII inhibitor that synergizes with the antimicrobial activity of quinolones, including in quinolone-resistant bacterial strains, further demonstrating the functional importance of ExoVII for the repair of type IIA TOPcc

    Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes

    Get PDF
    The widely used quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases, resulting in irreversible topoisomerase cleavage complexes (TOPcc). Whereas the excision repair pathways of TOPcc in eukaryotes have been extensively studied, it is not known whether equivalent repair pathways for prokaryotic TOPcc exist. By combining genetic, biochemical, and molecular biology approaches, we demonstrate that exonuclease VII (ExoVII) excises quinolone-induced trapped DNA gyrase, an essential prokaryotic type IIA topoisomerase. We show that ExoVII repairs trapped type IIA TOPcc and that ExoVII displays tyrosyl nuclease activity for the tyrosyl-DNA linkage on the 5\u27-DNA overhangs corresponding to trapped type IIA TOPcc. ExoVII-deficient bacteria fail to remove trapped DNA gyrase, consistent with their hypersensitivity to quinolones. We also identify an ExoVII inhibitor that synergizes with the antimicrobial activity of quinolones, including in quinolone-resistant bacterial strains, further demonstrating the functional importance of ExoVII for the repair of type IIA TOPcc

    Novas atividades biológicas em antigos metabólitos: ácido oleanólico e eugenol de Eugenia caryophyllata

    Full text link
    Ácido oleanólico apresenta no barbeiro Rhodnius prolixus, vetor da doença de Chagas, toxicidade dosedependente e drástica inibição da muda nas doses de 1, 10 e 100 mg/ml. Eugenol induz uma letargia que persiste por vários dias, apresenta forte fagorrepelência, toxicidade média e inibição total da muda nas doses de 10 e 100 mg/ml

    Rapid binding and release of Hfq from ternary complexes during RNA annealing

    Get PDF
    The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼108 M−1s−1) observed with Cy3-Hfq was followed by a slow transition (0.5 s−1) to a stable Hfq–RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions

    Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules

    Get PDF
    Acetyl phosphate (acetyl-P) serves critical roles in coenzyme A recycling and ATP synthesis. It is the intermediate of the Pta-AckA pathway that inter-converts acetyl-coenzyme A and acetate. Acetyl-P also can act as a global signal by donating its phosphoryl group to specific two-component response regulators. This ability derives from its capacity to store energy in the form of a high-energy phosphate bond. This bond, while critical to its function, also destabilizes acetyl-P in cell extracts. This lability has greatly complicated biochemical analysis, leading in part to widely varying acetyl-P measurements. We therefore developed an optimized protocol based on two-dimensional thin layer chromatography that includes metabolic labeling under aerated conditions and careful examination of the integrity of acetyl-P within extracts. This protocol results in greatly improved reproducibility, and thus permits precise measurements of the intracellular concentration of acetyl-P, as well as that of other small phosphorylated molecules

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response
    corecore