10 research outputs found

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future.

    Get PDF
    PURPOSE: Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. DESIGN: Meta-analysis of prevalence data. PARTICIPANTS: A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. METHODS: AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). MAIN OUTCOME MEASURES: Prevalence of early and late AMD, BCVA, and number of AMD cases. RESULTS: Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%-5.0%) in those aged 55-59 years to 17.6% (95% CI 13.6%-21.5%) in those aged ≄85 years; for late AMD these figures were 0.1% (95% CI 0.04%-0.3%) and 9.8% (95% CI 6.3%-13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≄80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million. CONCLUSION: We observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti-vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans

    Increasing Prevalence of Myopia in Europe and the Impact of Education

    Get PDF
    Purpose To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend. Design Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E3) Consortium. Participants The E3 Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years. Methods Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≀-0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment. Main Outcome Measures Variation in age-specific myopia prevalence for differing years of birth and educational level. Results There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6-18.1) to 23.5% (95% CI, 23.2-23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0-25.8), 29.1% (CI, 28.8-29.5), and 36.6% (CI, 36.1-37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio-2.43 (CI, 1.26-4.17) and 2.62 (CI, 1.31-5.00), respectively - whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21-6.57). Conclusions Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia

    Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium

    Get PDF
    To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E3) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≀−0.75 diopters (D), high myopia ≀−6D, hyperopia ≄1D and astigmatism ≄1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≄25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4–30.9], high myopia 2.7 % (95 % CI 2.69–2.73), hyperopia 25.2 % (95 % CI 25.0–25.4) and astigmatism 23.9 % (95 % CI 23.7–24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8–52.5) in 25–29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Association of lipid-lowering drugs, anti-diabetic drugs, non-steroidal anti-inflammatory drugs, and levodopa with age-related macular degeneration in Europeans: A meta-analysis of the European Eye Epidemiology (E3) - consortium

    No full text
    International audiencePurpose : Changes in lipid metabolism, chronic inflammation and increased oxidative stress have been discussed as patho-etiogenetic drivers in age-related macular degeneration (AMD). Systemic medication, such as lipid-lowering drugs (LLD) and anti-diabetic drugs, affect these pathways and may therefore also play a role in AMD pathogenesis. We aimed to investigate associations of commonly used systemic drugs with AMD prevalence in the European population.Methods : We included 38,694 adults from 14 population-based studies from the European Eye Epidemiology (E3) consortium. We performed multivariable logistic regression modelling to examine medication use association with prevalence of AMD as well as late AMD. Analyses were carried out separately by study and results pooled using random effects meta-analysis. We conducted these analyses separately for LLD, anti-diabetic drugs, non-steroidal anti-inflammatory drugs (NSAID), and L-Dopa.Results : Between studies, mean age ranged from 61.5 ± 7.1 to 82.6 ± 3.8 years and prevalence ranged from 12.1% to 64.5% and from 0.5% to 35.5% for any and any late AMD, respectively. In the meta-analysis of our multivariable models, LLD and anti-diabetic drugs were associated with lower AMD prevalence (OR 0.85, 95% confidence interval (CI)=0.79 - 0.91 and OR 0.78, 95% CI=0.66 - 0.91). We found no association with late AMD or with any other medication.Conclusions : Our study shows an association of LLD and anti-diabetic drug use with lower AMD prevalence across multiple European cohorts. Our findings support the importance of metabolic processes in the complex etiology of AMD

    Prevalence of Age-Related Macular Degeneration in Europe

    No full text

    Associations with intraocular pressure across Europe: The European Eye Epidemiology (E3) Consortium

    No full text
    corecore