103 research outputs found

    Parity nonconservation effect in the resonance elastic electron scattering on heavy He-like ions

    Full text link
    We investigate the parity nonconservation effect in the elastic scattering of polarized electrons on heavy He-like ions, being initially in the ground state. The enhancement of the parity violation is achieved by tuning the energy of the incident electron in resonance with quasidegenerate doubly-excited states of the corresponding Li-like ion. We consider two possible scenarios. In the first one we assume that the polarization of the scattered electron is measured, while in the second one it is not detected.Comment: 13 pages, 3 figures, 2 table

    Parity nonconservation effect in the dielectronic recombination of polarized electrons with heavy He-like ions

    Full text link
    We investigate the parity nonconservation (PNC) effect in the dielectronic recombination (DR) of a polarized electron with a heavy He-like ion into doubly-excited ((1s2p1/2)0nΞΊ)1/2((1s 2p_{1/2})_{0} n{\kappa})_{1/2} and ((1s2s)0nΞΊ)1/2\left(\left(1s 2s\right)_{0} n{\kappa}\right)_{1/2} states of Li-like ion. We determine the nuclear charge number ZZ for which these opposite-parity levels are near to cross and, therefore, the PNC effect will be significantly enhanced. Calculations are performed for quantum numbers nβ‰₯4n \geq 4 and ΞΊ=Β±1\kappa = \pm 1.Comment: 12 pages, 1 figur

    Calculations of QED effects with the Dirac Green function

    Full text link
    Modern spectroscopic experiments in few-electron atoms reached the level of precision at which an accurate description of quantum electrodynamics (QED) effects is mandatory. In many cases, theoretical treatment of QED effects has to be performed without any expansion in the nuclear binding strength parameter ZΞ±Z\alpha (where ZZ is the nuclear charge number and Ξ±\alpha is the fine-structure constant). Such calculations involve multiple summations over the whole spectrum of the Dirac equation in the presence of the binding nuclear field, which can be evaluated in terms of the Dirac Green function. In this paper we describe the technique of numerical calculations of QED corrections with the Dirac Green function, developed in numerous investigations during the last two decades

    Parity-violating transitions in beryllium-like ions

    Get PDF

    Parity violation in the resonance elastic electron scattering on He-like uranium

    Get PDF
    Synopsis Parity violation on the cross section of the resonance elastic electron scattering by He-like uranium ion is studied. It is assumed that the incident electron is polarized and tuned in resonance with one of the close-lying opposite-parity states

    Backward scattering of low-energy antiprotons by highly charged and neutral uranium: Coulomb glory

    Full text link
    Collisions of antiprotons with He-, Ne-, Ni-like, bare, and neutral uranium are studied theoretically for scattering angles close to 180∘^{\circ} and antiproton energies with the interval 100 eV -- 10 keV. We investigate the Coulomb glory effect which is caused by a screening of the Coulomb potential of the nucleus and results in a prominent maximum of the differential cross section in the backward direction at some energies of the incident particle. We found that for larger numbers of electrons in the ion the effect becomes more pronounced and shifts to higher energies of the antiproton. On the other hand, a maximum of the differential cross section in the backward direction can also be found in the scattering of antiprotons on a bare uranium nucleus. The latter case can be regarded as a manifestation of the screening property of the vacuum-polarization potential in non-relativistic collisions of heavy particles.Comment: 14 pages, 5 figure

    РАБЧЕВ Π’Π•Π ΠœΠžΠ”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘Π’ΠžΠ™Π‘Π’Π’ ΠŸΠ•Π Π Π•ΠΠΠ’ΠžΠ’ ΠœΠ•Π’ΠΠ›Π›ΠžΠ’ И ИΠ₯ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π• ПРИ ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π˜ ΠŸΠžΠ”Π“ΠžΠ’ΠžΠ’ΠšΠ˜ ΠŸΠ ΠžΠ‘ К Π₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠžΠœΠ£ ΠΠΠΠ›Π˜Π—Π£

    Get PDF
    Thermodynamic properties, namely standard molar enthalpy of formation (Ξ”HfΒ°298), standard molar entropy (SΒ°298), and temperature dependence of heat capacity (Π‘Ρ€(Π’)) of crystalline metal perrhenates, were assessed by the semi-empirical methods. In this work, Ξ”HfΒ°298, SΒ°298 and coefficients a, b and c for Cp = Π° + 0.001Γ—bΓ—T + 105Γ—cΓ—T –2equation were calculated using several methods and averaged. These thermodynamic properties were calculated for the following perrhenates metals: Li, N, K, Rb, Cs, Cu, Ba, Fe, Ca, Cd, Co, Mg, Mn, Pb, Sr, Zn, Al, CrΠΈ Fe. The calculated values of the thermodynamic properties were in good accordance with the known literature data. New data were applied to the thermodynamic simulation of rhenium-containing sample pretreatment processes for the chemical analysis. The thermodynamic simulation of the sintering sample with the magnesium oxide with/without oxidizing agents was carried out using HSC 6.1 software with new data about the perrhenates. According to the calculated results, the addition of the oxidizing agent (NaNO3 or K2S2O7) to the magnesium oxide was needed and its presence ensured the rhenium transition into the solution without losses. In this case, rhenium was present at the temperature of the sintering predominantly as NaReO4c or KReO4c. Calculation results and estimation of perrhenates thermodynamic properties could be used for the thermodynamic simulation of different processes as well as in analytical chemistry and in metallurgy.Keywords: perrhenates, thermodynamic properties, thermodynamic simulation, sintering, oxidizing agent, rhenium(Russian)Β DOI: http://dx.doi.org/10.15826/analitika.2019.23.4.015Β O.V. Melchakova1, P.V. Zaitceva1, A.V. Maiorova1,2,Β T.V. Kulikova1,2, N.V. Pechishcheva1, K.Yu. Shunyaev1,21Institute of Metallurgy of the Ural Branch of the Russian academy of Sciences,Β 101, Amundsen street, Ekaterinburg, 620016, Russian Federation, 2Ural Federal University named after the first President of Russia B.N. Yeltsin,19, Mira street, Ekaterinburg, 620002, Russian FederationΠ‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ полуэмпиричСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΡ†Π΅Π½Π΅Π½Ρ‹ тСрмодинамичСскиС свойства ΠΏΠ΅Ρ€Ρ€Π΅Π½Π°Ρ‚ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² (Li, Na, K, Rb, Cs, Cu, Ba, Fe, Ca, Cd, Co, Mg, Mn, Pb, Sr, Zn, Al, CrΠΈ Fe) Π² кристалличСском состоянии: стандартная ΡΠ½Ρ‚Π°Π»ΡŒΠΏΠΈΡ образования (Ξ”HΒ°298), стандартная энтропия (SΒ°298)ΠΈ тСмпСратурная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ тСплоСмкости (Π‘Ρ€(Π’)) Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 298.15 – 1200 K. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ…, Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΎΡ†Π΅Π½ΠΊΠΈ Ξ”HΒ°298 (эмпиричСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Π›Π΅ Π’Π°Π½Π°, ΠΈΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠœΠΎΡΡ‚Π°Ρ„Π°)ΠΈ SΒ°298 (ΠΈΠ½ΠΊΡ€Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠšΡƒΠΌΠΎΠΊΠ° ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ НСймана – Коппа). Для расчСта коэффициСнтов a, b, c Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Cp = Π° + 0.001Γ—bΓ—T + 105Γ—cΓ—T –2 Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, эмпиричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ АбашидзС ΠΈ Π¦Π°Π³Π°Ρ€Π΅ΠΉΡˆΠ²ΠΈΠ»ΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠœΠΎΡΡ‚Π°Ρ„Π°. ЗначСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ, Π±Ρ‹Π»ΠΈ усрСднСны ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² тСрмодинамичСском ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ. Π‘ использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса HSC 6.1, Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ рассчитанными ΠΈ усрСднСнными тСрмодинамичСскими свойствами ΠΏΠ΅Ρ€Ρ€Π΅Π½Π°Ρ‚ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ², Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ тСрмодинамичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСсса спСкания рСнийсодСрТащих ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². РассмотрСно спСканиС ΠΏΡ€ΠΎΠ±, содСрТащих Ρ€Π΅Π½ΠΈΠΉ, с оксидом магния Π² отсутствии ΠΈ присутствии ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ (NaNO3 ΠΈΠ»ΠΈ K2S2O7). Показано, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π³Π°Π·ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Ρ€ΡŒ рСния Π² процСссС спСкания. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ тСорСтичСскиС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ примСнимости рассчитанных Π½Π°ΠΌΠΈ тСрмодинамичСских свойств ΠΏΠ΅Ρ€Ρ€Π΅Π½Π°Ρ‚ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ². РассчитанныС тСрмодинамичСскиС свойства ΠΏΠ΅Ρ€Ρ€Π΅Π½Π°Ρ‚ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… тСрмодинамичСских расчСтов ΠΊΠ°ΠΊ Π² аналитичСской Ρ…ΠΈΠΌΠΈΠΈ, Ρ‚Π°ΠΊ ΠΈ Π² ΠΌΠ΅Ρ‚Π°Π»Π»ΡƒΡ€Π³ΠΈΠΈ.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: ΠΏΠ΅Ρ€Ρ€Π΅Π½Π°Ρ‚Ρ‹, тСрмодинамичСскиС свойства, тСрмодинамичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, спСканиС, ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠ°, Ρ€Π΅Π½ΠΈΠΉDOI: http://dx.doi.org/10.15826/analitika.2019.23.4.01

    Π˜Π—Π£Π§Π•ΠΠ˜Π• ΠŸΠ ΠžΠ¦Π•Π‘Π‘Π Π‘ΠžΠžΠ‘ΠΠ–Π”Π•ΠΠ˜Π― МЫШЬЯКА И БУРЬМЫ ПРИ ΠžΠ’Π”Π•Π›Π•ΠΠ˜Π˜ ΠœΠΠšΠ ΠžΠšΠžΠ›Π˜Π§Π•Π‘Π’Π’ ЖЕЛЕЗА, Π₯РОМА Π’ Π’Π˜Π”Π• Na3FeF6, Na3CrF6

    Get PDF
    Theoretical and experimental studies were carried out for the first time in order to determine the mechanism of co-precipitation of arsenic and antimony during their separation from the macro-quantities of iron and chromium in the form of Na3FeF6 and Na3CrF6 sediments. It was found that the application of Dubinin-Radushkevich adsorption isotherm gives the most accurate description of the process. The average free energy of adsorption for As and Sb is 9.6 and 9.7 kJ/mol respectively. Co-precipitation of analytes in the micropores of precipitates occurred as a result of the chemical (ion-exchange) reaction. The possibility of inhibiting this process by introducing a different amount of complexing agent (hydrofluoric acid) was studied. The addition of HF led to the formation of more coarse crystalline precipitates with lower specific surface area and porosity. For the accurate ICP-AES determination of analytes (As, Sb) the molar ratio of precipitating agent / complexing agent (NaF / HF) β‰ˆ 1 should be strictly observed. According to the developed procedure, state standard samples of steels and nickel-based precision alloys were prepared for ICP-AES determination of As and Sb contents. The difference between the found and certified content of analytes did not exceed the permitted deviations given in the corresponding Russian state standards. The ICP-AES method of simultaneous determination of As and Sb contents after their preliminary separation from the main components is recommended for the analysis of materials with high content of Fe and Cr.Keywords: sorption, co-precipitation, determination of arsenic and antimony, inductively coupled plasma atomic emission spectroscopy (ICP-AES), adsorption isotherms, fluorides, matrix componentsDOI: http://dx.doi.org/10.15826/analitika.2017.21.3.001Β A.V. Maiorova1, S.Yu. Melchakov1,2, T.G. Okuneva2 , K.A. Vorontsova1, M.A. Mashkovtsev21Institute of Metallurgy of Ural Branch of Russian Academy of Sciences,101 Amundsena st., Yekaterinburg, 620016, Russian Federation2Ural Federal University, 19 Mira st., Yekaterinburg, 620002, Russian FederationΠ’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ тСорСтичСскиС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования с Ρ†Π΅Π»ΡŒΡŽ опрСдСлСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° соосаТдСния ΠΌΡ‹ΡˆΡŒΡΠΊΠ° ΠΈ ΡΡƒΡ€ΡŒΠΌΡ‹ ΠΏΡ€ΠΈ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚ макроколичСств ΠΆΠ΅Π»Π΅Π·Π°, Ρ…Ρ€ΠΎΠΌΠ° Π² Π²ΠΈΠ΄Π΅ Na3FeF6, Na3CrF6. УстановлСно, Ρ‡Ρ‚ΠΎ использованиС ΠΈΠ·ΠΎΡ‚Π΅Ρ€ΠΌΡ‹ адсорбции Π”ΡƒΠ±ΠΈΠ½ΠΈΠ½Π°-Π Π°Π΄ΡƒΡˆΠΊΠ΅Π²ΠΈΡ‡Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ описанию процСсса. БрСдняя свободная энСргия адсорбции для As ΠΈ Sb ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ значСния 9.6 ΠΈ 9.7 ΠΊΠ”ΠΆ/моль соотвСтствСнно. БоосаТдСниС Π² ΠΌΠΈΠΊΡ€ΠΎΠΏΠΎΡ€Π°Ρ… осадков происходит Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ химичСской (ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ) Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. Π˜Π·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ингибирования процСсса с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ввСдСния Ρ€Π°Π·Π½ΠΎΠ³ΠΎ количСства ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° – Ρ„Ρ‚ΠΎΡ€ΠΎΠ²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ кислоты. Π•Π΅ использованиС ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ Π±ΠΎΠ»Π΅Π΅ крупнокристалличСских осадков с мСньшСй ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒΡŽ. Для Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ИБП-АЭБ опрСдСлСния Π°Π½Π°Π»ΠΈΡ‚ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ строгоС соблюдСниС мольного ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΎΡΠ°Π΄ΠΈΡ‚Π΅Π»ΡŒ/ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉ Π°Π³Π΅Π½Ρ‚ (NaF/HF) β‰ˆ 1. По Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ ΠΊ ИБП-АЭБ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ содСрТания As ΠΈ Sb Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ Π“Π‘Πž состава стали ΠΈ сплавов ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π½Π° Π½ΠΈΠΊΠ΅Π»Π΅Π²ΠΎΠΉ основС. Π Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹ΠΌ ΠΈ аттСстованным ΠΈΡ… содСрТаниСм Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²ΠΎΠ², ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π“ΠžΠ‘Π’Π°Ρ….Β  ИБП-АЭБ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ опрСдСлСния содСрТания As ΠΈ Sb с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ основных ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° для Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² с высоким содСрТаниСм Fe ΠΈ Cr.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: адсорбция, соосаТдСниС, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΡ‹ΡˆΡŒΡΠΊΠ° ΠΈ ΡΡƒΡ€ΡŒΠΌΡ‹, Π°Ρ‚ΠΎΠΌΠ½ΠΎ-эмиссионная спСктромСтрия с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ (ИБП-АЭБ), ΠΈΠ·ΠΎΡ‚Π΅Ρ€ΠΌΡ‹ адсорбции, Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Ρ‹, ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹DOI: http://dx.doi.org/10.15826/analitika.2017.21.3.00
    • …
    corecore