Collisions of antiprotons with He-, Ne-, Ni-like, bare, and neutral uranium
are studied theoretically for scattering angles close to 180∘ and
antiproton energies with the interval 100 eV -- 10 keV. We investigate the
Coulomb glory effect which is caused by a screening of the Coulomb potential of
the nucleus and results in a prominent maximum of the differential cross
section in the backward direction at some energies of the incident particle. We
found that for larger numbers of electrons in the ion the effect becomes more
pronounced and shifts to higher energies of the antiproton. On the other hand,
a maximum of the differential cross section in the backward direction can also
be found in the scattering of antiprotons on a bare uranium nucleus. The latter
case can be regarded as a manifestation of the screening property of the
vacuum-polarization potential in non-relativistic collisions of heavy
particles.Comment: 14 pages, 5 figure