View metadata, citation and similar papers at core.ac.uk

Parity-violating transitions in beryllium-like ions*

A. Surzhykov^{†1,2,3}, S. Fritzsche^{3,4}, A. V. Maiorova⁵, V. M. Shabaev⁵, and Th. Stöhlker^{1,3,4}

¹GSI, Darmstadt, Germany; ²University of Heidelberg, Germany; ³Helmholtz Institute Jena, Germany; ⁴University of Jena, Germany; ⁵St. Petersburg State University, Russia

Parity-violation (PV) phenomena in highly-charged ions currently attract much attention (see e.g. [1, 2]). In particular, many studies are focused on the mixing between opposite-parity atomic levels caused by the weak electron-nucleus interaction. A number of proposals have been made to detect such a mixing and, hence, to explore the basic parameters of the electroweak theory. Most of theses proposals have dealt up to now with the neardegenerate 1s2s and $1s2p_{1/2}$ states of helium-like heavy ions for which the PV effects are significantly enhanced. In the high-Z domain, however, the lifetimes of such singlyexcited states are shorter than $\tau \sim 10^{-10}$ seconds which makes the observation of the parity-violating phenomena in two-electron systems rather challenging. During the recent years, therefore, particular interest has been given to other few-electron species whose long-lived levels might be mixed by the weak interaction.

Owing to their shell structure, beryllium-like heavy ions may provide an alternative and promising tool for studying atomic PV phenomena. For the case of zero nuclear spin, the first excited state of these ions, $1s^2 2s 2p {}^3P_0$, can decay to the $1s^2 2s^2 {}^1S_0$ ground level solely by the strongly suppressed two-photon E1M1 emission and, hence, has a lifetime of the order of seconds. Moreover, the energy splitting between these two levels does not exceed 260 eV even for the heaviest ions, thus leading to a rather remarkable ${}^{1}S_{0} - {}^{3}P_{0}$ parity-violating mixing [3]. To observe such a mixing, we have recently proposed to utilize the source of the coherent extreme ultraviolet (EUV) radiation and to induce a single-photon transition between the metastable $1s^2 2s 2p \ ^3P_0$ and short-lived $1s^2 2s 2p \ ^3P_1$ levels [4]. Since the ${}^{3}P_{0}$ state has a small PV-admixture of the ground one, such an absorption can proceed not only via the allowed M1 but also the parity-violating E1 channel (see Fig. 1).

The interference between the M1 and PV–E1 excitation channels becomes "visible" if the $1s^2 2s 2p {}^3P_0 \rightarrow 1s^2 2s 2p {}^3P_1$ transition is induced by the circularly polarized light. In this case the photoexcitation cross section reads as [4]:

$$\sigma_{\lambda} = \sigma_{M1} \left(1 + \lambda \epsilon \right) \,, \tag{1}$$

where $\lambda = \pm 1$ for the right– and left–hand polarization, σ_{M1} describes the leading, parity–preserved ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$ magnetic dipole channel, and the so–called asymmetry coefficient ϵ is given by:

$$\epsilon = -2 \eta_{PV} \frac{\left\langle 1s^2 2s 2p \ {}^{3}P_1 \| E1 \| \ 1s^2 2s^2 \ {}^{1}S_0 \right\rangle}{\left\langle 1s^2 2s 2p \ {}^{3}P_1 \| M1 \| \ 1s^2 2s 2p \ {}^{3}P_0 \right\rangle}.$$
 (2)

 $1s^{2} 2p^{2} 3P$ $1s^{2} 2s 2p 3P$ $1s^{2} 2s^{2} 1S$ $1s^{2} 2s^{2} 1S$

Figure 1: Proposed scheme for measuring the PV-mixing between the ground $1s^2 2s^2 {}^1S_0$ and the first excited $1s^2 2s 2p {}^3P_0$ states of beryllium-like heavy ions. For the case of U^{88+} , the energies $E_{^3P_0}$ and $E_{^3P_1}$ if defined relative to the ground state energy are 258.3 and 298.2 eV, correspondingly. From Ref. [4].

In this expression, $\langle ... || E1, M1 || ... \rangle$ are the reduced matrix elements for the ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ (E1) and ${}^{3}P_{0} \rightarrow {}^{3}P_{1}$ (M1) transitions, and the parameter η_{PV} describes the PV–mixing between the ${}^{1}S_{0}$ and ${}^{3}P_{0}$ states.

The asymmetry parameter ϵ is the physical observable in the proposed experiment. It can be determined by inducing the $1s^2 2s 2p {}^3P_0 \rightarrow 1s^2 2s 2p {}^3P_1$ transition separately with left– and right– circularly polarized light and by recording then the intensity difference of the x-rays from the decay of the 3P_1 state. Since these intensities are proportional to the photo–excitation cross sections (1), $I_{\lambda}({}^3P_1 \rightarrow {}^1S_0) \sim \sigma_{\lambda}$, we can find:

$$\epsilon = \frac{I_+ - I_-}{I_+ + I_-} \,. \tag{3}$$

In order to provide an estimate of this asymmetry parameter, detailed calculations have been performed within the framework of the multi–configuration Dirac–Fock (MCDF) approach [4]. Based on these calculations, we argue that the most suitable candidate for the experimental realization of the proposed scheme is beryllium–like uranium U^{88+} . For this ion, the PV–mixing between the $1s^2 2s 2p \ ^3P_0$ and $1s^2 2s^2 \ ^1S_0$ states gives rise to $\eta_{PV} = -1.0 \times 10^{-8}$ and the asymmetry parameter $\epsilon = 3.1 \times 10^{-7}$.

References

- [1] V. M. Shabaev et al., Phys. Rev. A 81 (2010) 052102.
- [2] A. Bondarevskaya et al., Phys. Rep. 507 (2011) 1.
- [3] M. Maul et al., J. Phys. B: At. Mol. Phys. 31 (1998) 2725.
- [4] A. Surzhykov et al., Phys. Scr. (2013), accepted.

^{*}Work supported by Helmholtz Association under the project VH-NG-421.

[†] surz@physi.uni-heidelberg.de