Parity nonconservation effects in the dielectronic recombination of polarized electrons with heavy He-like ions *

V. A. Zaytsev¹, A. V. Maiorova¹, V. M. Shabaev¹, A. V. Volotka^{1,2}, and G. Plunien²

¹St. Petersburg State University, Russia; ²Technische Universität Dresden, Germany

Parity nonconservation (PNC) experiments with heavy few-electron ions can provide new possibilities for tests of the Standard Model in the low-energy regime [1, 2]. In contrast to neutral atoms, the atomic structure of heavy fewelectron ions can be calculated to a high accuracy. To date, various schemes [3, 4, 5, 6, 7, 8, 9] for PNC measurements in highly-charged ions were suggested. Here we report on recent studies of the PNC effect in the dielectronic recombination of polarized electrons with He-like ions.

The enhancement of PNC-effect in atomic systems takes place for close-lying opposite-parity levels. As such levels, we consider the $((1s2s)_0 ns)_{1/2}$ and $((1s2p_{1/2})_0 ns)_{1/2}$ states, which are found to be close for $4 \le n \le 7$, $Z \sim 60$, and $Z \sim 90$, where n is the principal quantum number of the third electron and Z is the nuclear charge number. The related energy differences are listed in Table 1.

Table 1: The energy difference $E_{((1s2p_{1/2})_0ns)_{1/2}} - E_{((1s2s)_0ns)_{1/2}}$, in eV, for the values of Z and n, which seem to be the most promising for enhancement of the PNC effect.

Z	n = 4	n = 5	n = 6	n = 7
54	-0.489(35)	-0.787(34)	-1.21(4)	-1.47(4)
60	3.49(6)	1.42(6)	-0.222(56)	-0.376(56)
62	3.90(6)	1.66(6)	0.818(64)	-0.103(64)
64	4.40(7)	2.06(7)	1.14(7)	0.699(74)
88	9.17(30)	5.34(29)	3.86(29)	3.17(29)
90	8.27(47)	4.13(47)	2.51(47)	1.75(47)
92	6.69(27)	2.97(28)	-1.07(28)	-1.60(28)

We consider the process of the dielectronic recombination of a polarized electron with a heavy He-like ion, being originally in the ground state, into the doubly-excited $d_1 = ((1s2p_{1/2})_0 ns)_{1/2}$ and $d_2 = ((1s2s)_0 ns)_{1/2}$ states. In order to evaluate the PNC effect, we consider the cross section without the PNC effect, $\sigma_0 = (\sigma_{1/2} + \sigma_{-1/2})/2$, and the P-violating contribution, $\sigma_{\text{PNC}} = (\sigma_{1/2} - \sigma_{-1/2})/2$, where $\sigma_{\pm 1/2}$ are the cross sections for the $\pm 1/2$ helicity (spin projection onto the electron momentum direction) of the incident electron, respectively.

In the process under investigation, the most pronounced PNC effect is expected in the uranium (Z = 92) ion, when the energy of the incident electron tuned in resonance with $((1s2p_{1/2})_0 6s)_{1/2}$ state. The corresponding behaviour of $\sigma_{\rm PNC}$ as a function of the energy of the incident electron is presented in Fig. 1. In this case the PNC asymmetry, $|\sigma_{\rm PNC}|/\sigma_0$, reaches a value of about 1.5×10^{-5} . The analogous process of the dielectronic recombination of polar-

Figure 1: PNC cross section of the dielectronic recombination process into the states $((1s2p_{1/2})_0 6s)_{1/2}$ and $((1s2s)_0 6s)_{1/2}$ for Z = 92. The difference $E_i - E_{((1s2p_{1/2})_0 6s)_{1/2}}$ determines uniquely the energy of the incident electron.

ized electrons with the H-like ions at Z < 60 was studied by Gribakin *et al.* in Ref. [10]. The PNC asymmetry of that process was found to amount of about 5×10^{-9} , which is by several orders of magnitude smaller than the effect as we have reported here.

References

- [1] I. B. Khriplovich, Phys. Scr. T112, 52 (2004).
- [2] J. S. M. Ginges and V. V. Flambaum Phys. Rep. 397, 63 (2004).
- [3] V. G. Gorshkov and L. N. Labzowsky, JETP Lett. 19, 394 (1974).
- [4] A. Schäfer et al., Phys. Rev. A 40, 7362 (1989).
- [5] L. N. Labzowsky et al., Phys. Rev. A 63, 054105 (2001).
- [6] A. V. Maiorova *et al.*, J. Phys. B: At. Mol. Opt. Phys. 42, 205002 (2009).
- [7] V. M. Shabaev et al., Phys. Rev. A 81, 052102 (2010).
- [8] F. Ferro et al., Phys. Rev. A 83, 052518 (2011).
- [9] A. V. Maiorova *et al.*, J. Phys. B: At. Mol. Opt. Phys. 44, 225003 (2011).
- [10] G. F. Gribakin *et al.*, Phys. Rev. A **72**, 032109 (2005); Phys. Rev. A **80**, 049901(E) (2009).

^{*} Work supported by GSI and DFG