26 research outputs found

    Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets

    Get PDF
    The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and subcircuit assembly of PN neuron subsets in the cortico-cerebellar pathway.Peer reviewe

    Non-Coding RNAs in Retinal Development

    Get PDF
    Retinal development is dependent on an accurately functioning network of transcriptional and translational regulators. Among the diverse classes of molecules involved, non-coding RNAs (ncRNAs) play a significant role. Members of this family are present in the cell as transcripts, but are not translated into proteins. MicroRNAs (miRNAs) are small ncRNAs that act as post-transcriptional regulators. During the last decade, they have been implicated in a variety of biological processes, including the development of the nervous system. On the other hand, long-ncRNAs (lncRNAs) represent a different class of ncRNAs that act mainly through processes involving chromatin remodeling and epigenetic mechanisms. The visual system is a prominent model to investigate the molecular mechanisms underlying neurogenesis or circuit formation and function, including the differentiation of retinal progenitor cells to generate the seven principal cell classes in the retina, pathfinding decisions of retinal ganglion cell axons in order to establish the correct connectivity from the eye to the brain proper, and activity-dependent mechanisms for the functionality of visual circuits. Recent findings have associated ncRNAs in several of these processes and uncovered a new level of complexity for the existing regulatory mechanisms. This review summarizes and highlights the impact of ncRNAs during the development of the vertebrate visual system, with a specific focus on the role of miRNAs and a synopsis regarding recent findings on lncRNAs in the retina

    Restricted perinatal retinal degeneration induces retina reshaping and correlated structural rearrangement of the retinotopic map

    Get PDF
    The formation of the retinotopic map depends on the action of axon guidance molecules, activity-dependent mechanisms and axonal competition. However, little is known about the plasticity potential of the system and the effects on the remodelling of retinocollicular connections upon retinal insults. Here we create a mouse model in which retinal ganglion cells that project to anterior and posterior superior colliculus undergo cell death during topographic map formation. We show that the remaining retinal ganglion cells expand the targeted area in the superior colliculus and at the same time increase their spatial coverage in the retina in a correlated fashion. The resulting contralateral topographic map is overall maintained but less precise, while ipsilateral retinal ganglion cell axons are abnormally distributed in anterior and posterior superficial superior colliculus. These results suggest the presence of plastic mechanisms in the developing mammalian visual system to adjust retinal space and its target coverage and ensure a uniform map

    Cathepsin D in laryngeal carcinoma: preliminary report

    No full text
    The biological activity of tumor cells seems to be related to some peptides produced in the same neoplastic cytoplasms. Cathepsin D is considered one of these proteins, which is able to promote mitosis and tumor invasion. The effects of cathepsin D have been studied in tumors of the breast, ovary and endometrium, and in few cases of laryngeal cancer. Using an immunohistochemical method, we have attempted to evaluate cathepsin D expression in 17 cases of laryngeal squamous cell carcinoma in comparison with the presence of the same protein in the adjacent normal laryngeal mucosa and in inflammatory cells surrounding the tumor. In 11 cases, cathepsin D was present in more than 50% of neoplastic cells, in 4 cases positive cells were 30-50% of all neoplastic cells, in the last 2 cases less than 30% of neoplastic cells expressed the antigen. In normal respiratory epithelium the expression of cathepsin D was limited to the apex of cells. In flat metaplastic epithelium, we observed a positive reaction of basal and parabasal cells. Such positivity became diffuse to all cellular layers in dysplastic foci. A minimal positivity was also detected in salivary glands and ducts. A strong positivity was present in macrophages around and among tumor cells. Our findings suggest that cathepsin D plays a role in cancerogenesis and growth of laryngeal squamous cell carcinoma. The expression of cathepsin D also in normal and inflammatory cells may influence the quantitation of this antigen in studies in which cytosolic levels of cathepsin D are measured after protein extraction

    Genomic analysis reveals association of specific SNPs with athletic performance and susceptibility to injuries in professional soccer players

    No full text
    The development of specific and individualized training programs is a possible way to improve athletic performance and minimize injuries in professional athletes. The information regarding the sport's physical demands and the athletes’ physical profile have been, so far, considered as exhaustive for the design of effective training programs. However, it is currently emerging that the genetic profile has to be also taken into consideration. By merging medical and genetic data, it is thus possible to identify the athlete's specific attitude to respond to training, diet, and physical stress. In this context, we performed a study in which 30 professional soccer players, subjected to standard sport medical evaluation and practices, were also screened for genetic polymorphism in five key genes (ACTN3, COL5A1, MCT1, VEGF, and HFE). This genetic analysis represents the central point of a multidisciplinary method that can be adopted by elite soccer teams to obtain an improvement in athletic performance and a concomitant reduction of injuries by tailoring training and nutritional programs. The genetic fingerprinting of single athletes led to the identification of two performance-enhancing polymorphisms (ACTN3 18705C>T, VEGF-634C>G) significantly enriched. Moreover, we derived a genetic model based on the gene set analyzed, which was tentatively used to reduce athletes’ predisposition to injuries, by dictating a personalized nutrition and training program. The potential usefulness of this approach is concordant with data showing that this team has been classified as the healthiest and least injured team in Europe while covering the highest distance/match with the highest number of high-intensity actions/match

    Hoxa2 Selects Barrelette Neuron Identity and Connectivity in the Mouse Somatosensory Brainstem

    Get PDF
    Mouse whiskers are somatotopically mapped in brainstem trigeminal nuclei as neuronal modules known as barrelettes. Whisker-related afferents form barrelettes in ventral principal sensory (vPrV) nucleus, whereas mandibular input targets dorsal PrV (dPrV). How barrelette neuron identity and circuitry is established is poorly understood. We found that ectopic Hoxa2 expression in dPrV neurons is sufficient to attract whisker-related afferents, induce asymmetrical dendrite arbors, and allow ectopic barrelette map formation. Moreover, the thalamic area forming whisker-related barreloids is prenatally targeted by both vPrV and dPrV axons followed by perinatal large-scale pruning of dPrV axons and refinement of vPrV barrelette input. Ectopic Hoxa2 expression allows topographically directed targeting and refinement of dPrV axons with vPrV axons into a single whisker-related barreloid map. Thus, a single HOX transcription factor is sufficient to switch dPrV into a vPrV barrelette neuron program and coordinate input-output topographic connectivity of a dermatome-specific circuit module.publishe

    Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets

    No full text
    The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.publishe
    corecore