487 research outputs found

    Towards a Decoupled Context-Oriented Programming Language for the Internet of Things

    Get PDF
    Easily programming behaviors is one major issue of a large and reconfigurable deployment in the Internet of Things. Such kind of devices often requires to externalize part of their behavior such as the sensing, the data aggregation or the code offloading. Most existing context-oriented programming languages integrate in the same class or close layers the whole behavior. We propose to abstract and separate the context tracking from the decision process, and to use event-based handlers to interconnect them. We keep a very easy declarative and non-layered programming model. We illustrate by defining an extension to Golo-a JVM-based dynamic language

    Modulation de la plasticité synaptique par les prostaglandines E2 à la synapse fibre moussue/cellule pyramidale CA3 en conditions physiologiques et dans un modÚle murin de la maladie d'Alzheimer

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia in elder people characterized by a loss of cognitive function linked to synaptic deficits. There is considerable evidence that neuroinflammation and AD are intimately linked. The key role of neuroinflammation in the course of the disease was figured out by epidemiological studies reporting a reduced prevalence to develop AD for patients chronically treated with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Prostaglandins are lipidic mediators derived from arachidonic acid and their synthesis is inhibited by NSAIDs. Among prostaglandins, PGE2 is known to modulate synaptic transmission and plasticity in the hippocampus and its concentration is higher in brains from AD patients. Numerous studies have reported synaptic deficits in the course of AD, mainly in the hippocampus which is essential for cognitive functions like learning or memory formation. The vast majority of these studies were focused on postsynaptic deficits at the canonical CA3-CA1 synapse. On the opposite, the synapse between mossy fiber and CA3 pyramidal cell (Mf-CA3) that express presynaptic short-term and long-term plasticity, was poorly studied in the context of AD. The aim of my project was to decipher the involvement of PGE2 in synaptic deficits in a mouse model of AD, the APPswe/PS1ΔE9 (APP/PS1). Our results show that acute application of PGE2 on wild type young mice impairs only presynaptic long term potentiation (LTP) at the Mf-CA3 synapse via the specific activation of EP3 receptor. In APP/PS1 mice, we demonstrate that the sole deficit at the Mf-CA3 synapse is an impairment of the presynaptic LTP at 12 months of age. Finally we demonstrate that the impaired presynaptic LTP in APP/PS1 mice can be rescued by the acute application of a specific EP3 receptor antagonist, pointing out the key role of PGE2 - EP3 signaling pathway in synaptic deficits in hippocampus in a mouse model of AD.La maladie d’Alzheimer (MA) est la forme la plus commune de dĂ©mence chez les personnes ĂągĂ©es. La maladie se caractĂ©rise par des pertes de fonctions cognitives et plusieurs Ă©tudes ont montrĂ© une Ă©troite relation entre la neuroinflammation, les dĂ©ficits synaptiques et la perte des fonctions cognitives dans la MA. L'importance de la composante neuroinflammatoire a Ă©tĂ© dĂ©montrĂ©e essentiellement grĂące Ă  des donnĂ©es Ă©pidĂ©miologiques rapportant une prĂ©valence diminuĂ©e de 40 Ă  70% chez des patients traitĂ©s chroniquement par des anti-inflammatoires non stĂ©roĂŻdiens (AINS) pour d'autres pathologies. Les AINS sont des inhibiteurs des enzymes de synthĂšse des prostaglandines. Les prostaglandines sont des mĂ©tabolites de l’acide arachidonique. Parmi ces prostaglandines, la PGE2 est connue pour moduler la transmission et les plasticitĂ©s synaptiques dans l’hippocampe et son expression est fortement augmentĂ©e dans la maladie d’Alzheimer. De nombreux travaux rapportent l'existence de dĂ©ficits synaptiques dans la MA, notamment dans l'hippocampe, siĂšge de la mĂ©moire et de l’apprentissage. Ces travaux se sont focalisĂ©s sur les dĂ©ficits postsynaptiques Ă  la synapse archĂ©typique formĂ©e entre les cellules pyramidales CA3 et CA1. A l'inverse, la synapse formĂ©e entre les fibres moussues et les cellules pyramidales CA3 (FM-CA3) exprime des plasticitĂ©s prĂ©synaptiques atypiques, Ă  court et Ă  long terme, indĂ©pendantes des rĂ©cepteurs NMDA et il n'existe que trĂšs peu d'Ă©tudes concernant ces plasticitĂ©s dans le contexte de MA. L’objectif de cette Ă©tude a Ă©tĂ© de montrer l’implication de PGE2 dans les dĂ©ficits synaptiques Ă  la synapse FM-CA3 dans un modĂšle murin de la MA, la souris double transgĂ©nique APPswe/PS1ΔE9 (APP/PS1). Nos rĂ©sultats montrent que l’application exogĂšne de PGE2 chez des souris sauvages entraĂźne un dĂ©ficit de plasticitĂ© uniquement sur la potentialisation Ă  long terme (PLT) exprimĂ©e prĂ©synaptiquement via l’activation spĂ©cifique du rĂ©cepteur EP3. Nous montrons aussi que dans la souris APP/PS1, seule cette PLT prĂ©synaptique est impactĂ©e Ă  partir de 12 mois. Enfin, ce dĂ©ficit de la PLT prĂ©synaptique pour la souris APP/PS1 est rĂ©versĂ© par un inhibiteur spĂ©cifique des rĂ©cepteurs EP3 montrant ainsi un rĂŽle clĂ© pour la signalisation PGE2 - EP3 dans les dĂ©ficits synaptiques hippocampaux de ce modĂšle murin de la maladie d’Alzheimer

    Inflammatory Mediators Increase Nav1.9 Current and Excitability in Nociceptors through a Coincident Detection Mechanism

    Get PDF
    Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant “persistent” Na+ current called NaN. Nav1.9−/− nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation

    New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles

    Get PDF
    Pickering emulsions are known to be an efficient and greener alternative to surfactant-stabilized emulsions. Particles, as key component of these systems, are responsible for their higher kinetic stability, and in recent years, the use of natural organic stabilizers has emerged as a solution to promote sustainability. By conferring them stimuli-responsiveness and/or by polymerizing the Pickering emulsion itself, the design of smart and advanced systems can be achieved. Radical polymerization has been by far the most studied polymerization route, and a wide range of materials were successfully synthesized: foams, composites, capsules, or imprinted microspheres. Not only the sustainability of these materials is improved, but also their performances and features are also generally enhanced thanks to the presence of the natural organic stabilizers. This Perspective is putting into light groundbreaking efforts in the field of the polymerization of Pickering emulsions, suggesting the range of accessible material that can be obtained through this powerful pathway

    Active Membrane Fluctuations Studied by Micropipet Aspiration

    Get PDF
    We present a detailed analysis of the micropipet experiments recently reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999), including a derivation of the expected behaviour of the membrane tension as a function of the areal strain in the case of an active membrane, i.e., containing a nonequilibrium noise source. We give a general expression, which takes into account the effect of active centers both directly on the membrane, and on the embedding fluid dynamics, keeping track of the coupling between the density of active centers and the membrane curvature. The data of the micropipet experiments are well reproduced by the new expressions. In particular, we show that a natural choice of the parameters quantifying the strength of the active noise explains both the large amplitude of the observed effects and its remarkable insensitivity to the active-center density in the investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure

    Nonequilibrium Fluctuations, Travelling Waves, and Instabilities in Active Membranes

    Get PDF
    The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g. proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spontaneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high activity.Comment: 4 two-column pages, two .eps figures included, revtex, uses eps

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

    Get PDF
    TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model

    Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2

    Get PDF
    TREK2 (KCNK10, K2P10.1) is a two-pore domain potassium (K2P) channel and a potential target for the treatment of pain. Like the majority of the K2P superfamily, there is currently a lack of useful pharmacological tools to study TREK2. Here we present a strategy for identifying novel TREK2 activators. A cell-based thallium flux assay was developed and used to screen a library of drug-like molecules, from which we identified the CysLT1 antagonist Pranlukast as a novel activator of TREK2. This compound was selective for TREK2 versus TREK1 and showed no activity at TRAAK. Pranlukast was also screened against other members of the K2P superfamily. Several close analogues of Pranlukast and other CysLT1 antagonists were also tested for their ability to activate K2P channels. Consistent with previous work, structure activity relationships showed that subtle structural changes to these analogues completely attenuated the activation of TREK2, whereas for TREK1, analogues moved from activators to inhibitors. Pranlukast's activity was also confirmed using whole-cell patch clamp electrophysiology. Studies using mutant forms of TREK2 suggest Pranlukast does not bind in the K2P modulator pocket or the BL-1249 binding site. Pranlukast therefore represents a novel tool by which to study the mechanism of TREK2 activation

    An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Na(v)1.6 in peripheral pain pathways

    Get PDF
    Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Na-v pathways. Using selective inhibitors and knockout animals, we found that Na(v)1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Na(v)1.6 blockers. Intraplantar injection of the Na(v)1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Na(v)1.6 in multiple peripheral pain pathways including cold allodynia. (c) 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved
    • 

    corecore