12 research outputs found

    Wernicke-Kleist-Leonhard phenotypes of endogenous psychoses: a review of their validity .

    Get PDF
    While the ICD-DSM paradigm has been a major advance in clinical psychiatry, its usefulness for biological psychiatry is debated. By defining consensus-based disorders rather than empirically driven phenotypes, consensus classifications were not an implementation of the biomedical paradigm. In the field of endogenous psychoses, the Wernicke-Kleist-Leonhard (WKL) pathway has optimized the descriptions of 35 major phenotypes using common medical heuristics on lifelong diachronic observations. Regarding their construct validity, WKL phenotypes have good reliability and predictive and face validity. WKL phenotypes come with remarkable evidence for differential validity on age of onset, familiality, pregnancy complications, precipitating factors, and treatment response. Most impressive is the replicated separation of high- and low-familiality phenotypes. Created in the purest tradition of the biomedical paradigm, the WKL phenotypes deserve to be contrasted as credible alternatives with other approaches currently under discussion.

    Parakinesia: A Delphi consensus report.

    No full text
    Abnormal movements are intrinsic to some forms of endogenous psychoses. Spontaneous dyskinesias are observed in drug-naïve first-episode patients and at-risk subjects. However, recent descriptions of spontaneous dyskinesias may actually represent the rediscovery of a more complex phenomenon, 'parakinesia' which was described and documented in extensive cinematographic recordings and long-term observations by German and French neuropsychiatrists decades before the introduction of antipsychotics. With the emergence of drug induced movement disorders, the description of parakinesia has been refined to emphasize the features enabling differential diagnosis with tardive dyskinesia. Unfortunately, parakinesia was largely neglected by mainstream psychiatry to the point of being almost absent from the English-language literature. With the renewed interest in motor phenomena intrinsic to SSD, it was timely not only to raise awareness of parakinesia, but also to propose a scientifically usable definition for this phenomenon. Therefore, we conducted a Delphi consensus exercise with clinicians familiar with the concept of parakinesia. The original concept was separated into hyperkinetic parakinesia (HPk) as dyskinetic-like expressive movements and parakinetic psychomotricity (PPM), i.e., patient's departing from the patient's normal motion style. HPk prevails on the upper part of the face and body, resembling expressive and reactive gestures that not only occur inappropriately but also appear distorted. Abnormal movements vary in intensity depending on the level of psychomotor arousal and are thus abated by antipsychotics. HPk frequently co-occurs with PPM, in which gestures and mimics lose their naturalness and become awkward, disharmonious, stiff, mannered, and bizarre. Patients are never spontaneously aware of HPk or PPM, and the movements are never experienced as self-dystonic or self-alien. HPk and PPM are highly specific to endogenous psychoses, in which they are acquired and progressive, giving them prognostic value. Their differential diagnoses and correspondences with current international concepts are discussed

    The polysemous concepts of psychomotricity and catatonia: A European multi-consensus perspective

    No full text
    Current classification systems use the terms “catatonia” and “psychomotor phenomena” as mere a-theoretical descriptors, forgetting about their theoretical embedment. This was the source of misunderstandings among clinicians and researchers of the European collaboration on movement and sensorimotor/psychomotor functioning in schizophrenia and other psychoses or ECSP. Here, we review the different perspectives, their historical roots and highlight discrepancies. In 1844, Wilhelm Griesinger coined the term “psychic-motor” to name the physiological process accounting for volition. While deriving from this idea, the term “psychomotor” actually refers to systems that receive miscellaneous intrapsychic inputs, convert them into coherent behavioral outputs send to the motor systems. More recently, the sensorimotor approach has drawn on neuroscience to redefine the motor signs and symptoms observed in psychoses. In 1874, Karl Kahlbaum conceived catatonia as a brain disease emphasizing its somatic - particularly motor - features. In conceptualizing dementia praecox Emil Kraepelin rephrased catatonic phenomena in purely mental terms, putting aside motor signs which could not be explained in this way. Conversely, the Wernicke-Kleist-Leonhard school pursued Kahlbaum's neuropsychiatric approach and described many new psychomotor signs, e.g. parakinesias, Gegenhalten. They distinguished 8 psychomotor phenotypes of which only 7 are catatonias. These barely overlap with consensus classifications, raising the risk of misunderstanding. Although coming from different traditions, the authors agreed that their differences could be a source of mutual enrichment, but that an important effort of conceptual clarification remained to be made. This narrative review is a first step in this direction

    The High Energy Density Scientific Instrument at the European XFEL

    No full text
    The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses

    Dynamic optical spectroscopy and pyrometry of static targets under optical and x-ray laser heating at the European XFEL

    No full text
    International audienceExperiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed

    Novel experimental setup for megahertz X‐ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X‐ray Free‐Electron Laser (EuXFEL)

    Get PDF
    The high‐precision X‐ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X‐ray Free‐Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X‐ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X‐ray heating and diffraction of Bi under pressure, obtained using 20 fs X‐ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.The high‐precision X‐ray diffraction (XRD) setup for work with diamond anvil cells (DACs) in Interaction Chamber 2 of the High Energy Density (HED) instrument of the European X‐ray Free‐Electron Laser is described. imag
    corecore