29 research outputs found

    A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle

    Get PDF
    Acknowledgements. This work was mainly funded by the EU FP7 CARBONES project (contracts FP7-SPACE-2009-1-242316), with also a small contribution from GEOCARBON project (ENV.2011.4.1.1-1-283080). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. Philippe Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. The authors wish to thank M. Jung for providing access to the GPP MTE data, which were downloaded from the GEOCARBON data portal (https://www.bgc-jena.mpg.de/geodb/projects/Data.php). The authors are also grateful to computing support and resources provided at LSCE and to the overall ORCHIDEE project that coordinate the development of the code (http://labex.ipsl.fr/orchidee/index.php/about-the-team).Peer reviewedPublisher PD

    How Do Employees Perceive Corporate Responsibility? Development and Validation of a Multidimensional Corporate Stakeholder Responsibility Scale

    Get PDF
    Recent research on the microfoundations of corporate social responsibility (CSR) has highlighted the need for improved measures to evaluate how stakeholders perceive and subsequently react to CSR initiatives. Drawing on stakeholder theory and data from five samples of employees (N = 3,772), the authors develop and validate a new measure of corporate stakeholder responsibility (CStR), which refers to an organization’s context-specific actions and policies designed to enhance the welfare of various stakeholder groups by accounting for the triple bottom line of economic, social, and environmental performance; it is conceptualized as a superordinate, multidimensional construct. Results from exploratory factor analyses, first- and second-order confirmatory factor analyses, and structural equation modeling provide strong evidence of the convergent, discriminant, incremental, and criterion-related validities of the proposed CStR scale. Two-wave longitudinal studies further extend prior theory by demonstrating that the higher-order CStR construct relates positively and directly to organizational pride and perceived organizational support, as well as positively and indirectly to organizational identification, job satisfaction, and affective commitment, beyond the contribution of overall organizational justice, ethical climate, and prior measures of perceived CSR

    Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall

    No full text
    International audiencePresent-day Sahelian vegetation in a highly anthropized semi-arid region is assessed from local to regional scales, through the joint analysis of MODIS LAI (1 km2 and 8-day resolutions), daily rainfall, morphopedological and land cover datasets covering the period 2000e2008. The study area is located in northwest Senegal and consists of the "Niayes" and the northwestern "Peanut Basin" eco-regions, characterized by market gardening and rain-fed cultivated crops, respectively. The objectives are i) to analyse at pixel scale LAI time series and their relation to vegetation and soil types, ii) the estimation of phenological metrics (start of season SOS, end of season EOS, growing season length GSL) and their interannual variability, iii) to recognize the vegetation responses to rainfall trends (mean annual precipitation, MAP; frequency of rainy events, K; combination of MAP and K, called F). Pixel-scale analyses show that LAI time series 1) describe the actual phenology (agreeing with groundtruth AGHRYMET data), and thus can be used as a proxy for Sahelian vegetation dynamics, 2) are strongly dependent on soil types. Median maps of SOS and EOS suggest an increase of the GSL from Saint-Louis to Dakar, in agreement with both the North-South rainfall gradient and the intensification of agricultural practices around Dakar. Significant correlations (R: 0.64) between annual variation coefficient of LAI and MAP for both herbaceous crops and natural vegetation are highlighted; this correlation is reinforced (R: 0.7) using the rainfall distribution factors K and F. Rainfall thresholds allowing the SOS can be defined for each type of vegetation. These thresholds are estimated at 0e5 mm, 20 mm and 40 mm for natural herbs, herbaceous crops and shrublands, respectively. If previous works revealed the close link between the MAP and the SOS, our results highlight that LAI dynamics are also controlled by rainfall distribution during the Monsoon season. In this study, climatic indicators are proposed for estimating vegetation dynamics and monitoring SOS. Coupling Earth observation data, such as MODIS LAI, with rainfall data, vegetation and soil information is found to be a reliable method for vegetation monitoring and for assessing the impact of human pressure on vegetation degradation

    Original Network of Zigzag Chains in the β Polymorph of Fe 2 WO 6 : Crystal Structure and Magnetic Ordering

    No full text
    International audienceThe structural and physical properties of the β polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of β-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a′ magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6
    corecore