4 research outputs found

    Origin of chromatin anaphase bridges

    Get PDF
    Successful chromosome segregation is crucial for the survival of a cell and to avoid diseases such as cancer. Anaphase bridges are a type of segregation defect that can arises from structurally compromised chromosomes. Little is known about the mechanisms that normally prevent them. In this study I screened for genes that normally prevent anaphase bridges in order to learn more about their origin. I found anaphase bridges to arise in replication mutants and it is possible to trigger these bridges by exposing cells to replication stress. Thus, impaired replication is one cause for anaphase bridges. Further I identified a role for the mitotic exit network (MEN) in chromosome segregation. MEN mutants display anaphase bridges and I present evidence that these bridges arise from telomeric regions and may involve un-replicated DNA.La correcta segregació dels cromosomes és esencial per la supervivencia de la cèl·lula i per evitar l’aparició de certes malalties com el càncer. Els ponts anafàsics són un tipus d’error de segregació que pot ser originat per defectes estructurals dels cromosomes. Es coneix molt poc sobre els mecanismes que eviten la formació d’aquests ponts anafàsics. En aquest estudi he fet un análisis global dels diferents gens que normalment eviten la formació d’aquests ponts, per abançar en la comprensió del seu origen. He vist que el ponts anaphasics es formen en mutants que tenen afectat el proces de replicació i que és posible de provocar la formació d’aquests ponts exposant les cèl·lules a estrés replicatiu. Per tant, els problemes en la replicació són una de les causes dels ponts d’anafase. He identificat el rol de “mitotic exit network (MEN)” en la segregació cromosómica. Els mutants per MEN formen ponts anafàsics i mostren evidències que aquests ponts probenen de regions telomèriques i podrien incloure DNA no replicat

    Origin of chromatin anaphase bridges

    No full text
    Successful chromosome segregation is crucial for the survival of a cell and to avoid diseases such as cancer. Anaphase bridges are a type of segregation defect that can arises from structurally compromised chromosomes. Little is known about the mechanisms that normally prevent them. In this study I screened for genes that normally prevent anaphase bridges in order to learn more about their origin. I found anaphase bridges to arise in replication mutants and it is possible to trigger these bridges by exposing cells to replication stress. Thus, impaired replication is one cause for anaphase bridges. Further I identified a role for the mitotic exit network (MEN) in chromosome segregation. MEN mutants display anaphase bridges and I present evidence that these bridges arise from telomeric regions and may involve un-replicated DNA.La correcta segregació dels cromosomes és esencial per la supervivencia de la cèl·lula i per evitar l’aparició de certes malalties com el càncer. Els ponts anafàsics són un tipus d’error de segregació que pot ser originat per defectes estructurals dels cromosomes. Es coneix molt poc sobre els mecanismes que eviten la formació d’aquests ponts anafàsics. En aquest estudi he fet un análisis global dels diferents gens que normalment eviten la formació d’aquests ponts, per abançar en la comprensió del seu origen. He vist que el ponts anaphasics es formen en mutants que tenen afectat el proces de replicació i que és posible de provocar la formació d’aquests ponts exposant les cèl·lules a estrés replicatiu. Per tant, els problemes en la replicació són una de les causes dels ponts d’anafase. He identificat el rol de “mitotic exit network (MEN)” en la segregació cromosómica. Els mutants per MEN formen ponts anafàsics i mostren evidències que aquests ponts probenen de regions telomèriques i podrien incloure DNA no replicat

    Budding yeast complete DNA synthesis after chromosome segregation begins

    No full text
    To faithfully transmit genetic information, cells must replicate their entire genome before division. This is thought to be ensured by the temporal separation of replication and chromosome segregation. Here we show that in 20-40% of unperturbed yeast cells, DNA synthesis continues during anaphase, late in mitosis. High cyclin-Cdk activity inhibits DNA synthesis in metaphase, and the decrease in cyclin-Cdk activity during mitotic exit allows DNA synthesis to finish at subtelomeric and some difficult-to-replicate regions. DNA synthesis during late mitosis correlates with elevated mutation rates at subtelomeric regions, including copy number variation. Thus, yeast cells temporally overlap DNA synthesis and chromosome segregation during normal growth, possibly allowing cells to maximize population-level growth rate while simultaneously exploring greater genetic space.This study was supported by Ministerio de Economía y Competitividad (MINECO) (BFU2015-68351-P) and AGAUR (2014SGR0974 & 2017SGR1054) grants to L.B.C. and the Unidad de Excelencia María de Maeztu, funded by the MINECO (MDM-2014-0370); the European Research Council (ERC) Starting Grant 2010-St-20091118 to Ma.M., the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013–2017’, SEV- 2012-0208 to the CRG and the grant ANR-10-LABX-0030-INRT, which is a French State fund managed by the Agence Nationale de la Recherche under the frame programme Investissements d’Avenir ANR-10-IDEX-0002-02 to the IGBMC

    The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress

    No full text
    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.This research was supported by ‘La Caixa’ fellowships to N.A., G.N. and M.Maier, and grants from the Spanish Ministry of Economy and Competitivity (BFU2011-30185 and CDS2009-00016 to M.-I.G.; BFU2015-71308 and BFU2013-50245-EXP to J.T.-R.; and BFU2009-08213 and BFU2012-37162/nto M.Mendoza), and from the European Research Council (ERC Starting Grant 260965 to M.Mendoza). We acknowledge support from the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-020
    corecore