1,857 research outputs found

    Influence of Selective Laser Trabeculoplasty (SLT) on the iStent inject® outcomes

    Get PDF
    Background: To evaluate the influence of Selective Laser Trabeculoplasty (SLT) on iStent inject® outcomes in open-angle glaucoma (OAG). Methods: In this retrospective comparative cohort outcome study, 66 patients who were treated with two iStent inject® devices were included. Patients were divided into two subgroups consisting of patients without SLT treatment prior to surgery and patients who had been treated previously with 360° SLT but without sufficient response. Outcome measures included intraocular pressure (IOP) and number of antiglaucoma medications after 6 weeks with three, six, 12, and 24 month follow-ups. Results: Mean preoperative IOP decreased from 20.4 ± 5.3 mmHg to 14.8 ± 3.0 mmHg for patients without SLT treatment prior to surgery (p = 0.001) and from 19.2 ± 4.5 mmHg to 14.0 ± 1.6 mmHg for patients with insufficient response to 360° SLT treatment (p = 0.027) at 12 months after iStent inject® implantation. No significant difference was found between the two groups (p > 0.05). The number of antiglaucoma medications did not change in both groups (p > 0.05) and showed no significant difference between the two groups (p > 0.05). Conclusion: Prior SLT treatment seems to have no negative influence on the IOP lowering-effect of iStent inject® implantation in patients with OAG. It is therefore an appropriate incremental procedure with no exclusion criterion for an iStent inject® implantation

    Characteristics and feedback of adult survivors of childhood cancer seen in Swiss comprehensive follow-up clinics led by general internists: a prospective cohort study.

    Get PDF
    OBJECTIVES In our study, we aimed to characterise adult childhood cancer survivors (ACCS), assess their health issues, gauge health-related quality of life (HRQOL) and evaluate visit satisfaction. DESIGN Prospective cohort study using data from clinical visits and questionnaires. SETTING Interdisciplinary follow-up programme for ACCS based on the long-term follow-up (LTFU) guidelines of the Children's Oncology Group and overseen by internists in two Swiss hospitals. PARTICIPANTS ACCS attending our LTFU clinics between April 2017 and January 2022 were eligible. INTERVENTIONS We documented medical history, current health status and assessed HRQOL using Short Form-36 V.2, comparing it with Swiss general population (SGP) norms (T mean=50, SD=10; age stratified). 3 months post visit, a feedback questionnaire was distributed. MAIN RESULTS Among 102 ACCS (mean age: 32 years (range: 18-62 years), 68% women), 43 had no prior follow-up (36 ACCS>28 years, 7 ACCS≤28 years). A notable 94% had health issues, affecting an average of 6.1 (SD=3.3) organ systems. HRQOL was lower in ACCS>28 years than the SGP>28 years (physical: 44.8 (SD=11.65) vs 49.3 (SD=10.29), p=0.016; mental: 44.4 (SD=13.78) vs 50.53 (SD=9.92), p=0.004). Older ACCS (>28 years) reported inferior physical (44.8 vs 50.1 (SD=9.30), p=0.017) and mental HRQOL (44.4 vs 50.3 (SD=7.20), p=0.009) than younger ACCS. The majority of respondents reported high levels of satisfaction with the consultation, exceeding 90%. CONCLUSION ACCS attending LTFU clinics face diverse health issues impacting multiple organ systems and exhibit lower HRQOL compared with the SGP. Thus, internist-led LTFU clinics are crucial for optimising follow-up care

    Alternative polyadenylation factor CPSF6 regulates temperature compensation of the mammalian circadian clock

    Get PDF
    A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3′-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3′-end-RNA-seq and mass spectrometry–based proteomics to globally quantify changes in 3′ UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).Peer Reviewe

    Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density

    Get PDF
    Arthritis patients develop hand bone loss, which leads to destruction and functional impairment of the affected joints. High resolution peripheral quantitative computed tomography (HR-pQCT) allows the quantification of volumetric bone mineral density (vBMD) and bone microstructure in vivo with an isotropic voxel size of 82 micrometres. However, image-processing to obtain bone characteristics is a time-consuming process as it requires semi-automatic segmentation of the bone. In this work, a fully automatic vBMD measurement pipeline for the metacarpal (MC) bone using deep learning methods is introduced. Based on a dataset of HR-pQCT volumes with MC measurements for 541 patients with arthritis, a segmentation network is trained. The best network achieves an intersection over union as high as 0.94 and a Dice similarity coefficient of 0.97 while taking only 33 s to process a whole patient yielding a speedup between 2.5 and 4.0 for the whole workflow. Strong correlation between the vBMD measurements of the expert and of the automatic pipeline are achieved for the average bone density with 0.999 (Pearson) and 0.996 (Spearman’s rank) with p<0.001 for all correlations. A qualitative assessment of the network predictions and the manual annotations yields a 65.9% probability that the expert favors the network predictions. Further, the steps to integrate the pipeline into the clinical workflow are shown. In order to make these workflow improvements available to others, we openly share the code of this work

    Deep Learning-Based Classification of Inflammatory Arthritis by Identification of Joint Shape Patterns—How Neural Networks Can Tell Us Where to “Deep Dive” Clinically

    Get PDF
    Objective: We investigated whether a neural network based on the shape of joints can differentiate between rheumatoid arthritis (RA), psoriatic arthritis (PsA), and healthy controls (HC), which class patients with undifferentiated arthritis (UA) are assigned to, and whether this neural network is able to identify disease-specific regions in joints. Methods We trained a novel neural network on 3D articular bone shapes of hand joints of RA and PsA patients as well as HC. Bone shapes were created from high-resolution peripheral-computed-tomography (HR-pQCT) data of the second metacarpal bone head. Heat maps of critical spots were generated using GradCAM. After training, we fed shape patterns of UA into the neural network to classify them into RA, PsA, or HC. Results Hand bone shapes from 932 HR-pQCT scans of 617 patients were available. The network could differentiate the classes with an area-under-receiver-operator-curve of 82% for HC, 75% for RA, and 68% for PsA. Heat maps identified anatomical regions such as bare area or ligament attachments prone to erosions and bony spurs. When feeding UA data into the neural network, 86% were classified as “RA,” 11% as “PsA,” and 3% as “HC” based on the joint shape. Conclusion We investigated neural networks to differentiate the shape of joints of RA, PsA, and HC and extracted disease-specific characteristics as heat maps on 3D joint shapes that can be utilized in clinical routine examination using ultrasound. Finally, unspecific diseases such as UA could be grouped using the trained network based on joint shape

    Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream

    Get PDF
    The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis

    CaMKIIδ-dependent dysregulation of atrial Na+ homeostasis promotes pro-arrhythmic activity in an obstructive sleep apnea mouse model

    Get PDF
    Background: Obstructive sleep apnea (OSA) has been linked to various pathologies, including arrhythmias such as atrial fibrillation. Specific treatment options for OSA are mainly limited to symptomatic approaches. We previously showed that increased production of reactive oxygen species (ROS) stimulates late sodium current through the voltage-dependent Na+ channels via Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the propensity for arrhythmias. However, the impact on atrial intracellular Na+ homeostasis has never been demonstrated. Moreover, the patients often exhibit a broad range of comorbidities, making it difficult to ascertain the effects of OSA alone. Objective: We analyzed the effects of OSA on ROS production, cytosolic Na+ level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from an OSA mouse model free from comorbidities. Methods: OSA was induced in C57BL/6 wild-type and CaMKIIδ-knockout mice by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS production via laser-scanning confocal microscopy. Quantifications of the cytosolic Na+ concentration and arrhythmia were performed by epifluorescence microscopy. Results: PTFE treatment resulted in increased cytosolic and mitochondrial ROS production. Importantly, the cytosolic Na+ concentration was dramatically increased at various stimulation frequencies in the PTFE-treated mice, while the CaMKIIδ-knockout mice were protected. Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-type PTFE mice while being impeded in the CaMKIIδ-knockout mice. Conclusion: Atrial Na+ concentration and propensity for spontaneous Ca2+ release events were higher in an OSA mouse model in a CaMKIIδ-dependent manner, which could have therapeutic implications

    CaMKIIδ-dependent dysregulation of atrial Na+ homeostasis promotes pro-arrhythmic activity in an obstructive sleep apnea mouse model

    Get PDF
    BackgroundObstructive sleep apnea (OSA) has been linked to various pathologies, including arrhythmias such as atrial fibrillation. Specific treatment options for OSA are mainly limited to symptomatic approaches. We previously showed that increased production of reactive oxygen species (ROS) stimulates late sodium current through the voltage-dependent Na+ channels via Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the propensity for arrhythmias. However, the impact on atrial intracellular Na+ homeostasis has never been demonstrated. Moreover, the patients often exhibit a broad range of comorbidities, making it difficult to ascertain the effects of OSA alone.ObjectiveWe analyzed the effects of OSA on ROS production, cytosolic Na+ level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from an OSA mouse model free from comorbidities.MethodsOSA was induced in C57BL/6 wild-type and CaMKIIδ-knockout mice by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS production via laser-scanning confocal microscopy. Quantifications of the cytosolic Na+ concentration and arrhythmia were performed by epifluorescence microscopy.ResultsPTFE treatment resulted in increased cytosolic and mitochondrial ROS production. Importantly, the cytosolic Na+ concentration was dramatically increased at various stimulation frequencies in the PTFE-treated mice, while the CaMKIIδ-knockout mice were protected. Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-type PTFE mice while being impeded in the CaMKIIδ-knockout mice.ConclusionAtrial Na+ concentration and propensity for spontaneous Ca2+ release events were higher in an OSA mouse model in a CaMKIIδ-dependent manner, which could have therapeutic implications

    Structural Basis for GTP-Dependent Dimerization of Hydrogenase Maturation Factor HypB

    Get PDF
    Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-motif. Structural comparison with the GTPÎłS-bound Methanocaldococcus jannaschii HypB identifies conformational changes in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon GTP hydrolysis

    Development and Implementation of the AIDA International Registry for Patients With Still's Disease

    Get PDF
    Objective: Aim of this paper is to present the design, construction, and modalities of dissemination of the AutoInflammatory Disease Alliance (AIDA) International Registry for patients with systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD), which are the pediatric and adult forms of the same autoinflammatory disorder. Methods: This Registry is a clinical, physician-driven, population- and electronic-based instrument implemented for the retrospective and prospective collection of real-world data. The collection of data is based on the Research Electronic Data Capture (REDCap) tool and is intended to obtain evidence drawn from routine patients' management. The collection of standardized data is thought to bring knowledge about real-life clinical research and potentially communicate with other existing and future Registries dedicated to Still's disease. Moreover, it has been conceived to be flexible enough to easily change according to future scientific acquisitions. Results: Starting from June 30th to February 7th, 2022, 110 Centers from 23 Countries in 4 continents have been involved. Fifty-four of these have already obtained the approval from their local Ethics Committees. Currently, the platform counts 290 users (111 Principal Investigators, 175 Site Investigators, 2 Lead Investigators, and 2 data managers). The Registry collects baseline and follow-up data using 4449 fields organized into 14 instruments, including patient's demographics, history, clinical manifestations and symptoms, trigger/risk factors, therapies and healthcare access. Conclusions: This international Registry for patients with Still's disease will allow a robust clinical research through collection of standardized data, international consultation, dissemination of knowledge, and implementation of observational studies based on wide cohorts of patients followed-up for very long periods. Solid evidence drawn from "real-life " data represents the ultimate goal of this Registry, which has been implemented to significantly improve the overall management of patients with Still's disease. NCT 05200715 available at
    • …
    corecore