1,525 research outputs found

    Teamwork in an Honours Group Writing Assignment

    Get PDF

    2017 Robotic Instrument Segmentation Challenge

    Get PDF
    In mainstream computer vision and machine learning, public datasets such as ImageNet, COCO and KITTI have helped drive enormous improvements by enabling researchers to understand the strengths and limitations of different algorithms via performance comparison. However, this type of approach has had limited translation to problems in robotic assisted surgery as this field has never established the same level of common datasets and benchmarking methods. In 2015 a sub-challenge was introduced at the EndoVis workshop where a set of robotic images were provided with automatically generated annotations from robot forward kinematics. However, there were issues with this dataset due to the limited background variation, lack of complex motion and inaccuracies in the annotation. In this work we present the results of the 2017 challenge on robotic instrument segmentation which involved 10 teams participating in binary, parts and type based segmentation of articulated da Vinci robotic instruments

    The sum of small parts: changing landscape fire regimes across multiple small landholdings in north-western Australia with collaborative fire management

    Get PDF
    Fire is a natural process in tropical savannas, but contemporary cycles of recurrent, extensive, severe fires threaten biodiversity and other values. In northern Australia, prescribed burning to reduce wildfire incidence is incentivised through a regulated emissions abatement program. However, only certain vegetation types are eligible; also, managers of small land parcels are disadvantaged by the program's transaction costs and interannual variability in management outcomes. Both impediments apply to landholders of the Dampier Peninsula, north-west Australia. Nevertheless, Indigenous rangers, pastoralists and other stakeholders have collaborated for 5 years to manage fire across their small holdings (300-2060 km(2)). We used remote sensing imagery to examine the project's performance against seven fire regime targets related to biodiversity, cultural and pastoral values. At the scale both of individual landholders and the entire Peninsula (18 500 km(2)), the project significantly reduced the extent of annual fire, high-severity fire, mid-late dry season fire, fire frequency and severe fire frequency. The project significantly increased the graininess of burnt and unburnt areas and the extent unburnt for 3+ years more than tripled. The project demonstrates that cross-tenure collaboration can overcome the challenges of managing fire on small land parcels. However, this project's sustainability depends on securing ongoing funding

    Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses

    Get PDF
    Malaria infection triggers pro-inflammatory responses in humans that are detrimental to host health. Parasite-induced enhancement in cytokine levels correlate with malaria-associated pathologies. Here we show that parasite tyrosyl-tRNA synthetase (PfTyrRS), a housekeeping protein translation enzyme, induces pro-inflammatory responses from host immune cells. PfTyrRS exits from the parasite cytoplasm into the infected red blood cell (iRBC) cytoplasm, from where it is released into the extracellular medium on iRBC lysis. Using its ELR peptide motif, PfTyrRS specifically binds to and internalizes into host macrophages, leading to enhanced secretion of the pro-inflammatory cytokines TNF-α ± and IL-6. PfTyrRS-macrophage interaction also augments expression of adherence-linked host endothelial receptors ICAM-1 and VCAM-1. Our description of PfTyrRS as a parasite-secreted protein that triggers pro-inflammatory host responses, along with its atomic resolution crystal structure in complex with tyrosyl-adenylate, provides a novel platform for targeting PfTyrRS in anti-parasitic strategies

    Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    Get PDF
    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD
    • 

    corecore