In mainstream computer vision and machine learning, public datasets such as
ImageNet, COCO and KITTI have helped drive enormous improvements by enabling
researchers to understand the strengths and limitations of different algorithms
via performance comparison. However, this type of approach has had limited
translation to problems in robotic assisted surgery as this field has never
established the same level of common datasets and benchmarking methods. In 2015
a sub-challenge was introduced at the EndoVis workshop where a set of robotic
images were provided with automatically generated annotations from robot
forward kinematics. However, there were issues with this dataset due to the
limited background variation, lack of complex motion and inaccuracies in the
annotation. In this work we present the results of the 2017 challenge on
robotic instrument segmentation which involved 10 teams participating in
binary, parts and type based segmentation of articulated da Vinci robotic
instruments