61 research outputs found

    AR-NAFAKA Project Aflatoxin Management: 2016-2017 Progress

    Get PDF
    United States Agency for International Developmen

    Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm

    Get PDF
    Published online: 14 October 2016; Open Access JournalFusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that reduces grain quality globally. Host resistance is the most suitable strategy for managing the disease. We report the results of genome-wide association study (GWAS) to detect alleles associated with increased resistance to FER in a set of 818 tropical maize inbred lines evaluated in three environments. Association tests performed using 43,424 single-nucleotide polymorphic (SNPs) markers identified 45 SNPs and 15 haplotypes that were significantly associated with FER resistance. Each associated SNP locus had relatively small additive effects on disease resistance and accounted for 1% to 4% of trait variation. These SNPs and haplotypes were located within or adjacent to 38 candidate genes, 21 of which were candidate genes associated with plant tolerance to stresses, including disease resistance. Linkage mapping in four bi-parental populations to validate GWAS results identified 15 quantitative trait loci (QTL) associated with F. verticillioides resistance. Integration of GWAS and QTL to the maize physical map showed eight co-located loci on Chromosomes 2, 3, 4, 5, 9 and 10. QTL on chromosomes 2 and 9 are new. These results reveal that FER resistance is a complex trait that is conditioned by multiple genes with minor effects. The value of selection on identified markers for improving FER resistance is limited; rather, selection to combine small effect resistance alleles combined with genomic selection for polygenic background for both the target and general adaptation traits might be fruitful for increasing FER resistance in maize

    Bean root rot management in Africa

    Get PDF

    Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize

    Get PDF
    Published online: 8 Sept 2018; Open Access ArticleMaize, the main dietary staple in Kenya, is one of the crops most susceptible to contamination by aflatoxin. To understand sources of aflatoxin contamination for home grown maize, we collected 789 maize samples from smallholder farmers’ fields in Eastern and South Western, two regions in Kenya representing high and low aflatoxin risk areas, respectively, and determined aflatoxin B1 (AFB1) using ELISA with specific polyclonal antibodies. AFB1 was detected in 274 of the 416 samples from Eastern Kenya at levels between 0.01 and 9091.8 μg kg−1 (mean 67.8 μg kg−1). In South Western, AFB1 was detected in 233 of the 373 samples at levels between 0.98 and 722.2 μg kg−1 (mean 22.3 μg kg−1). Of the samples containing AFB1, 153 (55.8%) from Eastern and 102 (43.8%) from South Western exceeded the maximum allowable limit of AFB1 (5 μg kg−1) in maize for human consumption in Kenya. The probable daily intake (PDI) of AFB1 in Eastern Kenya ranged from 0.07 to 60612 ng kg−1 bw day−1 (mean 451.8 ng kg−1 bw day−1), while for South Western, PDI ranged from 6.53 to 4814.7 ng kg−1 bw day−1 (mean 148.4 ng kg−1 bw day−1). The average PDI for both regions exceeded the estimated provisional maximum tolerable daily intake of AFB1, which is a health concern for the population in these regions. These results revealed significant levels of preharvest aflatoxin contamination of maize in both regions. Prevention of preharvest infection of maize by toxigenic A. flavus strains should be a critical focal point to prevent aflatoxin contamination and exposure

    Aflatoxin contamination in Tanzania: quantifying the problem in maize and groundnuts from rural households

    Get PDF
    Published online: 28 Apr 2021Aflatoxins are toxic and carcinogenic secondary metabolites, produced by Aspergillus flavus and Aspergillus parasiticus, which contaminate food and feed and threaten human and animal health. To assess the prevalence of aflatoxins in Tanzania, 180 groundnut and 200 maize samples were collected from 9 and 10 districts, respectively. Aflatoxin contamination was quantified using high performance liquid chromatography. Aflatoxins were detected in samples collected from all districts and prevalence ranged from 92 to 100% for groundnuts and 10 to 80% for maize. The mean aflatoxin level for groundnuts was 6.37 μg/kg and the highly contaminated sample had 40.31 μg/kg. For maize, the mean aflatoxin level was 12.47 μg/kg and the highly contaminated sample had 162.40 μg/kg. The estimated average probable daily intake (APDI) of aflatoxin B1 (AFB1) from groundnuts consumption was 1.88 ng/kg body weight/day, while for maize, it ranged between 151.98-272.89 ng/kg body weight/day. The APDI for both groundnut and maize exceeded the provisional maximum tolerable daily intake (PMTDI) of AFB1 for adults (1 ng/kg body weight/day), bringing about health concerns for populations in Tanzania. Another alarming finding was that 75% of the farmers who provided samples for analysis were not aware of aflatoxins or the negative health impacts from consuming contaminated products. Results reported in this paper show that aflatoxin contaminated staple crops are widely distributed in Tanzania and that the risk of human exposure is high due to diet preferences. Awareness campaigns are required to inform and protect farmers and consumers

    Evaluation of Mchare and Matooke Bananas for Resistance to Fusarium oxysporum f. sp. cubense Race 1

    Get PDF
    Open Access Journal; Published online: 23 Aug 2020Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc) race 1, is a major disease of bananas in East Africa. Triploid East African Highland (Matooke) bananas are resistant to Foc race 1, but the response of diploid (Mchare and Muraru) bananas to the fungus is largely unknown. A breeding project was initiated in 2014 to increase crop yield and improve disease and pest resistance of diploid and triploid East African Highland bananas. In this study, eight Mchare cultivars were evaluated for resistance to Foc race 1 in the field in Arusha, Tanzania. In addition, the same eight Mchare cultivars, as well as eight Muraru cultivars, 27 Mchare hybrids, 60 Matooke hybrids and 19 NARITA hybrids were also screened in pot trials. The diploid Mchare and Muraru cultivars were susceptible to Foc race 1, whereas the responses of Mchare, NARITAs and Matooke hybrids ranged from susceptible to resistant. The Mchare and Matooke hybrids resistant to Foc race 1 can potentially replace susceptible cultivars in production areas severely affected by the fungus. Some newly bred Matooke hybrids became susceptible following conventional breeding, suggesting that new hybrids need to be screened for resistance to all Foc variants

    International agricultural research to reduce food risks: case studies on aflatoxins

    Get PDF
    Despite massive expansion of human and livestock populations, fuelled by agricultural innovations, nearly one billion people are hungry and 2 billion are sickened each year from the food they eat. Agricultural and food systems are intimately connected to health outcomes, but health policy and programs often stop at the clinic door. A consensus is growing that the disconnection between agriculture, health and nutrition is at least partly responsible for the disease burden associated with food and farming. Mycotoxins produced by fungi are one of the most serious food safety problems affecting staple crops (especially maize and groundnuts). Aflatoxins, the best studied of these mycotoxins, cause around 90,000 cases of liver cancer each year and are strongly associated with stunting and immune suppression in children. Mycotoxins also cause major economic disruptions through their impacts on trade and livestock production. In this paper we use the case of fungal toxins to explore how agricultural research can produce innovations, understand incentives and enable institutions to improve, simultaneously, food safety, food accessibility for poor consumers and access to markets for smallholder farmers, thus making the case for research investors to support research into agricultural approaches for enhancing food safety in value chains. We first discuss the evolution of food safety research within the CGIAR. Then we show how taking an epidemiological and economic perspective on aflatoxin research connects health and nutrition outcomes. Finally, we present three case studies illustrating the traditional strengths of CGIAR research: breeding better varieties and developing new technologies
    • …
    corecore