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were significantly associated (P < 3 × 10−5) with MLND 
resistance. These SNPs are located within or adjacent to 
20 putative candidate genes that are associated with plant 
disease resistance. Ridge regression best linear unbiased 
prediction with five-fold cross-validation revealed higher 
prediction accuracy for IMAS-AM panel (0.56) over 
DTMA-AM (0.36) panel. The prediction accuracy for both 
within and across panels is promising; inclusion of MLND 
resistance associated SNPs into the prediction model fur-
ther improved the accuracy. Overall, the study revealed 
that resistance to MLND is controlled by multiple loci with 
small to medium effects and the SNPs identified by GWAS 
can be used as potential candidates in MLND resistance 
breeding program.

Abbreviations
MLND  Maize lethal necrosis disease
GBS  Genotyping-by-sequencing
LD  Linkage disequilibrium
MLM  Mixed linear model
MAF  Minor allele frequency
MCMV  Maize chlorotic mottle virus
SCMV  Sugarcane mosaic virus
ELISA  Enzyme-linked immunosorbent assay

Introduction

Maize lethal necrosis disease (MLND) has emerged as a 
devastating disease in eastern Africa since 2011 (Wangai 
et al. 2012). MLND in eastern Africa was found to result 
from synergistic interaction between Maize chlorotic mot-
tle virus (MCMV) and Sugarcane mosaic virus (SCMV). 
Although each of these viruses individually can cause dis-
ease, the synergistic interactions are more pronounced. 
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Abstract The maize lethal necrosis disease (MLND) 
caused by synergistic interaction of Maize chlorotic mot-
tle virus and Sugarcane mosaic virus, and has emerged 
as a serious threat to maize production in eastern Africa 
since 2011. Our objective was to gain insights into the 
genetic architecture underlying the resistance to MLND 
by genome-wide association study (GWAS) and genomic 
selection. We used two association mapping (AM) panels 
comprising a total of 615 diverse tropical/subtropical maize 
inbred lines. All the lines were evaluated against MLND 
under artificial inoculation. Both the panels were geno-
typed using genotyping-by-sequencing. Phenotypic varia-
tion for MLND resistance was significant and heritability 
was moderately high in both the panels. Few promising 
lines with high resistance to MLND were identified to be 
used as potential donors. GWAS revealed 24 SNPs that 
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SCMV was reported in Kenya many years ago (Louie 
1980). MCMV was first identified in Peru in 1973 (Castillo 
and Hebert 1974) and has been subsequently reported in 
the USA, parts of Latin America, and China (Niblett and 
Clafin 1978; Uyemoto et al. 1980; Xie et al. 2011). Wangai 
et al. (2012) first reported the MLND and MCMV in Kenya 
since the MLND has been reported in Uganda, Tanzania, 
Democratic Republic of the Congo, South Sudan and Ethi-
opia, seriously threatening maize production and the live-
lihoods of smallholder farmers in eastern Africa (Adams 
et al. 2013, 2014).

Maize plants are susceptible to MLND at all growth 
stages, from seedling to maturity. The diagnostic symptoms 
of MLND include chlorotic mottling of leaves, necrosis 
development from the leaf margin to the midrib, and dead 
heart; later-stage infection could lead to sterile pollen, small 
cobs with poor seed set, or death of the plants. Possible fac-
tors that contributed to the devastating effect of MLND 
in eastern Africa include new and perhaps highly virulent 
strains of MCMV and SCMV, conducive environment for 
survival and spread of insect-vectors of the two viruses 
(Cabanas et al. 2013), conducive environment for prolifera-
tion of the insect vectors of the two viruses, and continuous 
maize cropping in certain regions leading to build-up of 
virus inoculum. Studies undertaken jointly by International 
Maize and Wheat Improvement Center (CIMMYT) and 
Kenya Agriculture and Livestock Research Organization 
(KALRO) since 2012 revealed the vulnerability of a large 
array (nearly 90 percent) of pre-commercial and commer-
cial maize germplasm to the MLND, especially under arti-
ficial inoculation. The maize seed industry in eastern Africa 
is under significant pressure to quickly replace the highly 
vulnerable commercial hybrids. Therefore, accelerated 
development and deployment of improved maize varieties 
with resistance to MLND is now a top priority in eastern 
Africa. This in turn requires intensive screening of germ-
plasm for identifying sources of resistance, understanding 
the genetic architecture of MLND resistance, and utilizing 
molecular markers in breeding programs for fast-tracking 
development of improved varieties with MLND resist-
ance and other relevant traits for the African smallholder 
farmers.

Genome-wide association study (GWAS) enables anal-
ysis of genetic architecture of complex traits (Yan et al. 
2011). Compared to traditional linkage mapping, GWAS 
offers higher resolution and greater ability for identifying 
favorable genetic loci responsible for the trait of interest, 
while saving cost and time (Yu and Buckler 2006). Link-
age disequilibrium (LD) decay is rapid in maize due to its 
high diverse nature. Therefore, large numbers of polymor-
phic SNPs are required to ensure complete coverage of the 
genome. Genotyping-by-sequencing (GBS) generates mil-
lions of SNPs with affordable cost. To date, GWAS has 

been successfully applied to identify quantitative trait loci 
(QTL) or genomic regions conferring resistance to some 
important diseases of maize, such as Fusarium ear rot (Zila 
et al. 2013), gray leaf spot (Shi et al. 2014), head smut 
(Weng et al. 2012), Northern corn leaf blight (Poland et al. 
2011), Southern corn leaf blight (Kump et al. 2011), and 
SCMV (Tao et al. 2013). However, GWAS has not yet been 
undertaken or reported for identifying genomic regions 
influencing resistance to MLND.

Genomic selection or genome-wide selection (GS) is 
another promising breeding tool to improve the efficiency 
and speed of the breeding process (Zhao et al. 2012; Bey-
ene et al. 2015). GS involves use of a ‘training population’ 
of individuals that have been phenotyped and genotyped, 
for developing the prediction model. In the next step, this 
model is used to predict genomic estimated breeding val-
ues (GEBVs) of the individuals from the ‘estimation set’ 
which are not phenotyped but genotyped with high-density 
markers (Meuwissen et al. 2001). Initial GS studies applied 
to maize agronomic traits like plant height and dry matter 
yield showed promising results with high prediction accura-
cies (Riedelsheimer et al. 2012; Zhao et al. 2012). The pre-
diction accuracies on complex diseases like Northern corn 
leaf blight resistance (Technow et al. 2013) and Fusarium 
ear rot (Zila 2014) in maize clearly indicated the potential of 
GS for improving quantitative disease resistance. This moti-
vated us to implement GS on a complex trait like MLND.

In this study, two association mapping (AM) panels, 
namely IMAS (Improved Maize for African Soils) and 
DTMA (Drought Tolerant Maize for Africa), were used 
for understanding the genetic architecture of MLND resist-
ance. The objectives of the study were (1) to evaluate the 
diverse array of tropical and subtropical maize lines for 
their responses to MLND under artificial inoculation; (2) 
to identify genomic regions, SNPs, and putative candidate 
genes associated with MLND resistance; and (3) to assess 
the potential of GS for MLND resistance in maize.

Materials and methods

Plant materials and field trials

Two AM panels constituted under two major projects in 
Sub-Saharan Africa, namely DTMA (Drought Tolerant 
Maize for Africa) and IMAS (Improved Maize for African 
Soils), led by the Global Maize Program of the CIMMYT 
were used in this study. The IMAS-AM and DTMA-AM 
panels comprised 380 and 235 lines, respectively, rep-
resenting broadly the tropical/subtropical maize genetic 
diversity, including germplasm derived from breeding pro-
grams targeting tolerance to drought, soil acidity, and low 
N, resistance to insects and pathogens (Wen et al. 2011).
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Collection and maintenance of virus isolates

Stock isolates of MCMV and SCMV were collected from 
MLN hotspot areas in Kenya. Once confirmed on the pres-
ence of SCMV or MCMV by Enzyme-linked immunosorb-
ent assay (ELISA), both viruses were propagated on a sus-
ceptible hybrid, H614, in separate greenhouses. Infected 
leaf samples collected from the field were cut into small 
pieces and ground in a mortar and pestle in grinding buffer 
(10 mM potassium-phosphate, pH 7.0). The resulting sap 
extract was centrifuged for 2 min at 12,000 rpm. Carborun-
dum was added to decanted sap extract at the rate of 0.02 g/
ml. The susceptible hybrid H614 at two leaves stage was 
inoculated by rubbing sap extract onto the leaves. Two sep-
arate, sealed greenhouses were maintained for SCMV and 
MCMV inoculum production. Three weeks before inocula-
tion, ELISA was undertaken on random samples of leaves 
from the SCMV and MCMV greenhouses to confirm the 
inoculum purity.

Artificial field inoculation and phenotyping

In order to keep uniform MLND pressure across field trials, 
the optimized combination of SCMV and MCMV viruses 
(ratio of 4:1) were mixed and inoculated twice at 5th and 
6th week after planting. Plants were inoculated using a 
motorized, backpack mist blower (Solo 423 MistBlower, 
12 L capacity). An open nozzle (2-inche diameter) was 
used to deliver inoculum spray at a pressure of 10 kg/cm2. 
The presence of both viruses in the field trials was con-
firmed by ELISA once disease symptoms were apparent 
(approximately 2-week post-inoculation).

All inbred lines were evaluated in one-row 3 m plots 
with two replications in alpha lattice design in three sea-
sons during 2012–2014 at Narok [latitude 01°05′S, longi-
tude 35°52′E, 1827 m above sea level (asl)] and Naivasha 
(latitude 0°43′S, longitude 36°26′E, 1896 m asl) in Kenya. 
All standard agronomic management practices were fol-
lowed. Disease severity was scored for MLN at three-week 
post-inoculation. Inbreds were rated visually on a 1–5 dis-
ease severity scale, where 1 = no visible MLN symptoms, 
2 = fine chlorotic streaks mostly on older leaves, 3 = chlo-
rotic mottling throughout the plant, 4 = excessive chlorotic 
mottling on lower leaves and necrosis of newly emerging 
leaves (dead hear), and 5 = complete plant necrosis.

Phenotypic data analyses

For data based on ordinal scales, it is important to evaluate 
whether the data meets the assumptions of the applied sta-
tistical model (independent, normally distributed and con-
stant variance; Rawlings et al. 1998). In this study for both 
the panels, we plotted the residuals against predicted values 

which revealed that the variance was constant. The histo-
gram plot of the residuals was slightly deviated from nor-
mal distribution in DTMA panel compared to IMAS panel 
(data not shown). Therefore, we used the original data for 
the analyses without any transformation. Analyses of vari-
ance within and across environments was determined by 
the restricted maximum likelihood method using SAS 9.2 
(SAS Institute 2010). Variance components were estimated 
by following linear mixed model: Yijko = µ + gi + lj + rkj 
+ bojk + eijko, where Yijko was the phenotypic performance 
of the ith genotype at the jth environment in the kth replica-
tion of the oth incomplete block, µ was an intercept term, gi 
was the genetic effect of the ith genotype, lj was the effect 
of the jth environment, rkj was the effect of the kth replica-
tion at the jth environment, bojk was the effect of the oth 
incomplete block in the kth replication at the jth environ-
ment, and eijko was the residual. Environments and replica-
tions were treated as fixed effects and the other effects as 
random. Heritability on an entry-mean basis was estimated 
from the variance components as the ratio of genotypic 
to phenotypic variance. In addition, best linear unbiased 
estimates (BLUEs) were estimated across environments 
assuming fixed genotype effects. For association analyses, 
best linear unbiased prediction (BLUP) of each line was 
calculated for across environments.

Molecular data analyses

DNA of all inbred lines was extracted from greenhouse-
grown seedlings at 3–4 leaves stage. DNA was used for 
genotyping using GBS platform (Elshire et al. 2011) at 
Cornell University, Ithaca, USA, as per the procedure 
described in earlier studies (Elshire et al. 2011; Glaubitz 
et al. 2014). For quality screening in both the AM panels, 
SNPs which were either monomorphic, had missing value 
of >5 %, heterozygosity of >5 %, or had a minor allele fre-
quency of <0.02 were discarded from the analysis. After 
these quality checks, 259,000 and 264,000 high-quality 
SNPs were retained for GWAS in the IMAS and DTMA-
AM panels, respectively.

Genome‑wide association study (GWAS)

BLUP of each line was used as phenotypes in AM scans. 
MLND severity data were corrected for population struc-
ture using general linear model (GLM), as well as popu-
lation structure and kinship (Q + K) using mixed linear 
model (MLM) algorithm (Flint-Garcia et al. 2005; Yu and 
Buckler, 2006). GWAS and principal component (PC) anal-
ysis was performed using TASSEL ver 4.0 (Bradbury et al. 
2007). The first three PCs were used to correct the popula-
tion structure. The threshold P value (P < 3 × 10−5) was 
determined by considering the pattern of the Q–Q plot of 
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the model and the point at which the observed F test statis-
tics deviated from the expected F test statistics (Gao et al. 
2010; Sukumaran et al. 2012, 2015). The total proportion 
of phenotypic variance explained by the detected QTL was 
calculated by fitting all significant SNPs simultaneously in 
a linear model to obtain R2

adj. The proportion of the geno-
typic variance explained by all QTL was calculated as 
the ratio of pG = R2

adj/h
2. The 60 bp source sequences of 

the significantly associated SNPs were used to perform 
BLAST searches against the ‘B73’ RefGen_v2 (http://blast.
maizegdb.org/home.php?a=BLAST_UI). Within the local 
LD block including associated SNPs, the filtered genes in 
MaizeGDB (http://www.maizegdb.org) containing directly 
or adjacent to each associated SNP were considered as pos-
sible candidate genes for MLND resistance.

Genomic selection

Ridge regression best linear unbiased prediction (RR-
BLUP; Whittaker et al. 2000) was applied on the BLUEs 
across environments. From the GBS SNP marker data, a 
sub-set of 2000 SNPs distributed uniformly across genome, 
with no missing values, and minor allele frequency >0.05 
were used for genomic prediction in both the AM panels. 
Details of the implementation of the RR-BLUP model were 
described by Zhao et al. (2012). Prediction accuracy of the 
GS approach was evaluated using the five-fold cross-vali-
dation with 1000 times repetitions. The correlation between 
observed and predicted phenotypes (rMP) was estimated. 
The accuracy of GS was calculated as rGS = rMP/h (Dek-
kers 2007), where h refers to the square root of heritability. 
The genomic prediction was carried out in two scenarios 
where both the training and estimation populations were 
derived from (1) within AM panels, (2) across AM panels. 
Additionally, for both the scenarios, prediction was carried 
out with and without inclusion of GWAS based MLND 
resistance associated SNPs. In GS, optimizing the number 
of markers and the training population size without losing 
accuracy is crucial. Therefore, we checked the effect of 
prediction accuracy with different number of SNPs varying 

from 300 to 14,000, and the number of individuals from 20 
to 100 % with the interval of 20 % of the total population 
size.

Results

In each environment, average MLND severity rate was 
higher for the DTMA-AM panel, compared to the IMAS-
AM panel (Supplementary Figure S1). For both the panels, 
moderate yet significant correlations were observed among 
the genotypic values estimated in each environment (Sup-
plementary Table S1). This ruled out the possible bias due 
to environment-specific disease responses in a combined 
analysis. Analysis across environments revealed higher 
average diseases severity in DTMA-AM panel (3.53) than 
IMAS-AM panel (2.98) in 1–5 disease scale (Table 1). The 
frequency of the phenotypic values in both the panels fol-
lowed approximately a normal distribution with larger 
range of distribution for IMAS panel (Fig. 1). The ANOVA 
across environments revealed significant genotypic and 
genotype × environment interaction variances for MLND 
responses in both the panels (Table 1). The estimate of her-
itability was high with 0.73 for IMAS and 0.62 for DTMA 
panel, which reveals predominance of additive control of 
responses of maize genotypes to MLND resistance.

Among 615 lines evaluated for MLND response, 14 
lines were selected as best performing lines (Table 2). 
Interestingly yellow lines derived from tropical lowland 
breeding programs from Mexico were the best lines among 
the selected lines for MLND resistance. African breed-
ing programs where white maize is predominant, and we 
found five lines which showed relatively better resistance 
for MLND.

Principal component analysis revealed the presence of a 
clear population structure in both the panels with respect to 
first three PCs (Fig. 2a, c), as well as by several of the first 
ten PCs as revealed by their density distribution (Fig. 2b, 
d). In IMAS panel, lines derived from the CIMMYT physi-
ology program and from the South African Agriculture 

Table 1  Means, ranges, 
genotypic variance components 
(σG

2), error variances (σe
2), and 

broad sense heritability’s (h2) of 
380 lines of IMAS-AM panel, 
and 235 lines of DTMA-AM 
panel evaluated for MLND on 
a 1–5 scale in individual and 
across environments

** Significant at P < 0.01

Trait-MLND Environment Mean (range) σG
2 σ2

G × E σe
2 h2

IMAS-AM panel Narok-2012 2.84 (1.00–4.99) 0.36** – 0.27 0.73

Narok-2013 3.20 (0.92–5.00) 0.34** – 0.32 0.68

Naivasha-2013 2.83 (1.14–5.00) 0.25** – 0.60 0.40

Across environments 2.98 (1.15–4.85) 0.25** 0.08** 0.38 0.73

DTMA-AM panel Naivasha-2013 3.66 (2.01–5.00) 0.16** – 0.19 0.63

Naivasha-2014 3.29 (1.99–4.25) 0.11** – 0.22 0.68

Narok-2013 3.61 (2.31–5.00) 0.12** – 0.34 0.41

Across environments 3.53 (2.51–5.00) 0.09** 0.05** 0.23 0.62

http://blast.maizegdb.org/home.php%3fa%3dBLAST_UI
http://blast.maizegdb.org/home.php%3fa%3dBLAST_UI
http://www.maizegdb.org
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Research Council’s (ARC’s) breeding program formed dis-
tinct clusters (Fig. 2a). In the DTMA panel too, the lines 
developed by CIMMYT physiology program formed a dis-
tinct group (Fig. 2c).

From the GBS data, we selected a set of ~260 K high-
quality polymorphic SNPs for GWAS. Manhattan plots of 
the GWAS results for both IMAS and DTMA panels are 
shown in Fig. 3. In the IMAS-AM panel, we detected 18 
significant marker–trait associations for MLND resistance 
(Table 3, P < 3 × 10−5). These significantly associated 
SNPs individually explained 8–10 % of the total genotypic 
variance, whereas together explained 30 % of the total pro-
portion of genotypic variance for resistance to MLND. In 
the DTMA-AM panel, we detected six significant marker–
trait associations which individually explained 14–18 % of 
the total genotypic variance and together explained 37 % 
of the total proportion of genotypic variance for MLND 
resistance (Table 4). Comparison of the significant SNPs 
in the two AM panels revealed that there were no common 

marker–trait associations across panels; however, there 
was some similarity on number of SNPs falling into same 
chromosome bins. We used B73 maize genome reference 
sequence to identify putative candidate genes based on 
the SNPs significantly associated with MLND resistance 
(Tables 3, 4). From both the AM panels, a set of putative 
candidate genes were identified; based on their functions, 
these can be grouped as either R genes or plant defense 
responsive genes.

The accuracy of genomic predictions within the panel 
was higher for the IMAS-AM over the DTMA-AM panel 
(Fig. 4). The prediction accuracy was improved in both 
the panels by inclusion of the MLND resistance associated 
SNPs. The prediction accuracy across AM panels was 0.41 
which increased to 0.56 with the inclusion of MLND resist-
ance associated SNPs into the prediction model. The pre-
diction accuracy was severely affected by population size, 
whereas the effect was relatively low with decrease in the 
number of markers (Fig. 5).

Fig. 1  Phenotypic distribu-
tion of MLND scores on a 1–5 
scale in the IMAS-AM (A) and 
DTMA-AM (B) panels (mean 
values are indicated by arrows)

Table 2  The performance of selected lines with better resistance or lower disease severity against MLND in each and across three environments

Genotype MLND scores (scale 1–5) Heterotic 
group

Seed  
color

Breeding program Adaptation

Env1 Env2 Env3 Across Env

CLRCY039 1.18 0.92 1.14 1.17 B Yellow CIMMYT lowland tropics Tropical lowlands

CPHYS138 1.02 1.49 1.42 1.32 A Yellow CIMMYT Physiology Lowland/subtropical

CLRCY034 1.14 1.62 1.71 1.48 B Yellow CIMMYT lowland tropics Tropical lowlands

CLWN270 1.36 1.80 1.41 1.52 AB Yellow CIMMYT lowland tropics Tropical lowlands

CKL05003 1.12 1.58 2.12 1.62 B White CIMMYT Kenya Africa mid-elevation/subtropical

SM-189-75 1.07 1.57 2.26 1.69 – Orange KALRO, Kenya Mid-elevation

CLWQ251 1.42 2.28 1.60 1.81 B White CIMMYT lowland tropics Tropical lowlands

CML494 1.33 2.30 1.92 1.83 AB White CIMMYT Gene bank Lowland

SM-189-38 1.73 1.88 1.63 1.86 – White KALRO, Kenya Highland

CPHYS159 1.97 1.50 2.15 1.86 A White CIMMYT Physiology Lowland

CLYN261 1.87 1.49 2.19 1.87 A Yellow CIMMYT lowland tropics Tropical lowlands

SM-189-78 1.86 2.75 1.14 1.88 – Orange KALRO, Kenya Mid-elevation

CLYN231 1.08 2.03 2.48 1.90 A Orange CIMMYT lowland tropics Tropical lowlands

SM-189-69 1.23 1.98 2.59 1.99 – Yellow KALRO, Kenya Mid-elevation
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Discussion

Maize lethal necrosis disease is not only due to individual 
effect of either SCMV or MCMV, but it also includes their 
interaction effects which together lead to substantial yield 
loss and threatening the food security currently in eastern 
Africa (Ali and Yan 2012). The genetics of SCMV and 
other potyviruses has been extensively studied in maize 
with diverse germplasm (as reviewed by Redinbaugh and 
Pratt 2009). The genetics and inheritance of MLND resist-
ance is not known and is expected to be very complex due 
to combination of two viruses. GWAS and GS are the best 
tools used to study such complex traits (Riedelsheimer 
et al. 2012).

In GWAS, the power of QTL detection largely depends 
not only on the sample size but also on the trait architec-
ture and heritability (Yu et al. 2008); therefore, precise 
phenotypic evaluation for the trait of interest is critical. To 
obtain reliable phenotypic data, we have used a broad array 
of tropical and subtropical maize germplasm and evaluated 

the same for MLND severity under optimized artificial 
inoculation procedure for three environments in Kenya. 
Heritability was moderately high in both AM panels. The 
significant genotypic variation observed in both the pan-
els also reflected the high quality of the phenotypic data, 
thereby enabling identification of genomic regions with 
substantive power.

Population structure and linkage disequilibrium

The lines used in this study represents various breeding 
programs from Kenya, Zimbabwe, South Africa, Nigeria, 
Malawi and Columbia, as well as from CIMMYT gene 
bank and some specific programs such as CIMMYT Physi-
ology program, Latin American tropical lowland breeding 
program, and the mid-elevation Africa adapted breeding 
program (Fig. 2). As a result, confounding structure exists 
in these panels and false-positive associations would be 
expected if the data is not corrected for population struc-
ture (Yan et al. 2009). The use of first three PCs along with 

Fig. 2  Population structure based on principal component (PC) anal-
ysis of IMAS-AM (a) and DTMA-AM (c) panels. Violin plot show-
ing the density distribution of the first ten principal components for 
the genotypes from IMAS-AM (b) and DTMA-AM (d) panel. (In the 
IMAS-AM panel, the seven groups represent lines from the breeding 

program of G1 CIMMYT gene bank, G2 Physiology, G3 Zimbabwe, 
G4 Kenya, G5 Lowland tropical, G6 MAS-DT, and G7 ARC South 
Africa; and in the DTMA-AM panel, the seven groups represent lines 
from the breeding program of G1 Tropical, G2 Physiology, G3 Zimba-
bwe, G4 Kenya, G5 Subtropical, G6 Entomology, and G7 Columbia)
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relative kinship matrix in the Q  +  K model enabled us to 
correct for spurious associations which is also evident in 
quantile plots (Fig. 3a, c).

The mapping resolution and the required marker density 
for GWAS is largely depends on the extent of LD in the 
population (Yu and Buckler 2006; Myles et al. 2009). The 
extent of LD for the panels used in this study was examined 
in detail in earlier study (Vinayan et al. 2013). The aver-
age r2 values between neighboring markers were 0.29 and 
0.24 for IMAS-AM and DTMA-AM panel, respectively. 
This moderate LD estimate in both the panels suggests 
the diverse nature of the tropical/subtropical maize germ-
plasm used in this study, which on the other hand leads to 
high mapping resolution. The observed r2 between adja-
cent markers was comparable to (r2 = 0.28) the earlier 
studies (Van Inghelandt et al. 2011; Massman et al. 2013). 
Although it is estimated that at least one million SNPs are 
required to efficiently detect all minor QTL (Gore et al. 
2009), the observed average LD estimates in our study 
indicates that at least medium to large effect QTLs should 
be detected.

Genome‑wide association study for main effect QTL

Twenty-four SNPs significantly associated with MLND 
resistance are localized to eight out of ten different chro-
mosomes (Tables 3, 4). In IMAS-AM panel, the total 

genotypic variance explained by each significantly asso-
ciated SNPs was <10 %, consequently each of the QTL 
defined by these SNPs can be regarded as relatively minor 
QTL. On the contrary in DTMA-AM panel, we observed 
all six detected QTL explained >10 % of the total geno-
typic variance.

In IMAS-AM panel, eight SNPs detected on chromo-
some 3 are localized to the linkage map bins 3.04 and 
3.05 which reportedly had resistance genes to multiple 
potyviruses, including SCMV, MDMV (Maize dwarf 
mosaic virus), MCDV (Maize chlorotic dwarf virus), 
MSV (Maize mosaic virus), and WSMV (Wheat streak 
mosaic virus; Lübberstedt et al. 2006; Jones et al. 2011; 
Zambrano et al. 2014). In addition, these two genomic 
regions are also found to confer resistance to other fun-
gal diseases like Southern corn leaf blight, Northern corn 
leaf blight and gray leaf spot (Belcher 2009). Comparison 
of the GWAS detected SNPs position with previous QTL 
studies revealed that the SNP S2_211771737 was over-
lapped with the MMV resistance QTL(Zambrano et al. 
2014). Overall coincidence of MLND resistance associ-
ated SNPs with several other virus resistance loci supports 
the clustering nature of QTL for multiple virus resistance. 
In conclusion, the identified SNPs can be used as diagnos-
tic markers, and targeted selection of these SNPs alleles 
are useful in improvement of MLND resistance levels in 
elite breeding lines.

Fig. 3  Quantile–quantile plots 
(a, c), and Manhattan plots of a 
mixed linear model for MLND 
resistance in the IMAS-AM and 
DTMA-AM panels. Plots above 
red horizontal line showed 
the genome-wide significance 
with stringent threshold of 
P = 3 × 10−5. The different 
colors indicate the 10 different 
chromosomes of maize (color 
figure online)
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Putative candidate genes

Putative candidate genes identified on chromosomes 2 and 
3 were primarily involved in cell-to-cell transport of micro 
and macromolecules (Tables 3, 4). Plant viruses need to 
be able to move between mesophyll cells and also in and 
out of phloem tissue for systematic infection. It is assumed 
that plants resist the virus infection by controlling the virus 
movement inside the host and this mechanism is clearly 
demonstrated by RTM system in Arabidopsis (Chrisholm 
et al. 2000). Similarly, there is high probability that the 
putative candidate genes identified in this study might be 
involved in MLND resistance/vulnerability by controlling 
the movement of one or both the viruses in the plants; how-
ever, it needs to be confirmed by independent validation 
studies.

The plant defence mechanism against viruses is medi-
ated by resistance (R) genes and is well characterized 
in several crop plants (Spassova et al. 2001; Stange et al. 
2004; Vidal et al. 2002). In maize, two NBS-LRR genes are 
mapped into bin 3.05 of chromosome 3 (Xiao et al. 2007). 
On the other hand, the R genes often express complete 

resistance in the form of hypersensitive response by which 
the infected cells are killed by programmed cell death. 
In line with this observation, we identified one candidate 
gene GRMZM2G109805 on chromosome 5 which directly 
involved in hypersensitive reaction. Clear hypersensitive 
reaction and leaf death symptoms were also observed in 
MLND infected plants which suggest the possible role of 
these genes in plants resistance against viruses.

For viruses, host factors are important to complete their 
life cycle. Mutations in these host factors forms a recessive 
inherited virus resistance genes. We found one candidate 
gene GRMZM2G018943 functions as a translation initia-
tion factor eIF-2B is also due to similar type of mutations. 
Previously, few recessive inherited virus resistance genes 
were also reported for potyvirus and other viruses (Ing-
vardsen et al. 2010). These recessive genes contribute for 
certain level of resistance to MLND by associating with 
other minor QTL of SCMV or MCMV. However, it should 
be point out that these candidate genes should be further 
validated before integrating them in a breeding program.

Two candidate genes with putative protein serine/threo-
nine kinase activity have a role in signaling interactions 

Table 3  Details of the MLND resistance associated SNP markers identified in the IMAS association mapping panel

MLM mixed linear model, MAF minor allele frequency, Pg proportion of genotypic variance
a The exact physical position of the SNP can be inferred from marker’s name, for example, S2_211771737: chromosome 2; 211,771,737 bp

SNP Chr Position MLM-P 
values

PG 
(%)

MAF Allele Allele 
effect

Putative candidate 
genes

Predicted function of candidate 
gene

S10_23785810 10 23,785,810 7.08E−06 8.95 0.03 A/G 0.60 GRMZM2G451231 Unknown

S2_211771737 2 211,771,737 8.19E−06 8.99 0.03 T/G −1.40 GRMZM2G056612 Serine/threonine protein kinase

S3_34036135 3 34,036,135 8.96E−06 9.18 0.17 T/G −0.01 GRMZM2G094523 Plant-type cell wall organization

S3_165911594 3 165,911,594 9.38E−06 8.57 0.09 A/G 0.58 GRMZM2G177244 REM Transcription Factor

S7_115310293 7 115,310,293 1.12E−05 8.75 0.20 C/T 0.44 GRMZM2G125653 WRKY DNA-binding protein

S7_158464599 7 158,464,599 1.14E−05 8.59 0.27 C/A 0.30 GRMZM2G006942 Virus induced gene silencing

S1_24941000 1 24,941,000 1.17E−05 8.61 0.28 C/T 0.31 GRMZM2G032423 Putative uncharacterized protein

S1_148453861 1 148,453,861 1.33E−05 8.64 0.04 C/T 0.26 GRMZM2G135045 Aminopeptidase activity

S3_22944526 3 22,944,526 1.46E−05 8.95 0.41 T/C 0.38 GRMZM2G471517 Antifreeze

S3_189356738 3 189,356,738 1.52E−05 8.41 0.30 C/A 0.38 GRMZM2G008109 Serine-type endopeptidase activity

S5_205339659 5 205,339,659 1.93E−05 8.25 0.02 T/C 0.83 GRMZM2G181505 Dihydroorotate dehydrogenase

S3_114355785 3 114,355,785 2.05E−05 7.95 0.21 T/C 0.33 GRMZM2G405385 Homoiothermy/antifreeze

S3_44062810 3 44,062,810 2.12E−05 8.04 0.36 C/T 0.38 GRMZM2G404316 Antifreeze

S3_90976758 3 90,976,758 2.38E−05 8.52 0.42 C/G 0.28 GRMZM2G077415 Malate dehydrogenase activity

S1_148456035 1 148,456,035 2.59E−05 8.17 0.04 A/T 0.25 GRMZM2G135045 Manganese ion binding/ 
aminopeptidase activity

S3_90976749 3 90,976,749 2.73E−05 8.41 0.42 T/C 0.28 GRMZM2G077415 Malate dehydrogenase activity

S2_193503877 2 193,503,877 2.94E−05 8.32 0.36 C/G −0.29 GRMZM2G150541 Cellular metabolic process/ 
steroid biosynthetic process

S2_105760109 2 105,760,109 2.98E−05 8.24 0.15 A/G 0.13 GRMZM2G137984 Protein binding/retrograde trans-
port endosome to Golgi

Total Pg (%) 30.14
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during the perception of pathogens and consequent activa-
tion of defence responses (Romeis et al. 2000; Zhou et al. 
1995). Three identified putative candidate genes with ice-
binding functions are type of antifreeze proteins which 
belongs to group of pathogenesis-related proteins (Griffith 
and Yaish 2004; Hon et al. 1995) indicating their possible 
role in plant defence against MLND.

Genomic selection

The results from this study give first insights into the poten-
tial of genome-based prediction of MLND resistance in 
maize. The potential of GS has been assessed for simple 
and complex traits in maize (Crossa et al. 2010, 2013; Zhao 
et al. 2012). GS allows capture contribution of even small 
effect QTL and lead to high prediction accuracy. Using a 
cross-validation approach, genomic predictions explained 
~56 and ~36 % of the variation in IMAS-AM and DTMA-
AM panel, respectively. This is in accordance with the pre-
vious study for complex disease like Northern corn leaf 
blight (Technow et al. 2013). The differences in the pre-
diction accuracy between two AM panels can be attributed 

to their sample size, genetic variance, and trait heritabil-
ity (Table 1). On the other hand, the differences may also 
reflect the changes in population structure and LD esti-
mates. Surprisingly, prediction accuracy across panel was 
lower than IMAS panel which might be attributed to higher 
magnitude of genotypic variance observed for within panel 
than across panel (data not shown). Inclusion of MLND-
associated SNPs into training population led only slight 
increase in the prediction accuracy in both the panels, indi-
cating that prediction accuracy is mainly attributable to 
many small effects QTL distributed across genome.

Routine implementation of GS in breeding program is 
affected by resource allocation especially on cost of geno-
typing and phenotyping. RR-BLUP is known to perform 
well under low marker density (Habier et al. 2007), and 
accordingly, we observed marginal decrease in predic-
tion accuracy when number of markers were reduced from 
14,000 to 1000 (Fig. 5). Our finding also corroborates the 
earlier studies in maize (Zhao et al. 2012). However, accu-
racy was severely affected with the decrease in the size 
of training population. This clearly suggests the need of 
optimum size of training population which approximates 

Table 4  Details of the MLND resistance associated SNP markers identified in the DTMA association mapping panel

MLM mixed linear model, MAF minor allele frequency, Pg proportion of genotypic variance
a The exact physical position of the SNP can be inferred from marker’s name, for example, S2_211771737: chromosome 2; 211,771,737 bp

SNP Chr Position 
(Mba)

MLM-P 
values

PG (%) MAF Allele Allele 
effect

Putative candidate 
genes

Predicted function of candidate 
gene

S5_16839191 5 16.8 3.83E−06 18.44 0.10 C/T −1.00 GRMZM2G018943 Translation initiation factor  
eIF-2B delta subunit

S6_84786872 6 84.7 4.57E−06 18.42 0.06 C/A −0.75 GRMZM2G139073 MADS-box transcription factor

S5_16837972 5 16.8 6.09E−06 17.91 0.11 G/A −0.99 GRMZM2G077828 Unknown

S5_95192724 5 95.1 6.12E−06 18.81 0.06 G/A 0.06 GRMZM2G109805 Hypersensitivity

S1_269037989 1 269.0 2.80E−05 16.16 0.06 C/A −1.53 GRMZM2G047055 Actin cross link

S5_199371477 5 199.3 3.50E−05 14.91 0.03 G/T 0.88 GRMZM2G376067 MAIZE Putative uncharacterized 
protein

Total 37.20

Fig. 4  Distribution of the accu-
racy of genomic predictions for 
scenario 1 (prediction based on 
random markers) and scenario 
2 (prediction based on random 
and significant MLND-associ-
ated markers) within and across 
IMAS-AM and DTMA-AM 
panels, as revealed by five-fold 
cross-validation for MLND 
resistance
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n ~ 230 for MLND in IMAS-AM panel in the current 
study; however, this could vary depending on the germ-
plasm used and the trait under study.

Possible routine use of GS in breeding for resistance 
to MLND depends on its relative advantage over pheno-
typic selection. Phenotypic selection accuracy, estimated 
as h, was 0.85 and 0.79 for IMAS and DTMA-AM pan-
els, respectively. However, in maize, up to three cycles of 
GS per year are possible (Lorenzana and Bernardo 2009). 
Therefore, compared to phenotypic selection, GS would 
be more efficient in terms of genetic gain per year than per 
cycle.

Conclusion

In this study, we used two AM panels together com-
prised 615 lines to understand the genetic architecture of 
MLND resistance in tropical and subtropical maize germ-
plasm. GWAS scan identified 24 SNPs associated with 
resistance to MLND. GS results revealed higher selec-
tion gain per year for marker-based selection compared 
to phenotypic based selection for MLND resistance. Fur-
ther research is warranted on validating the effects of the 

identified candidate genes and their functional variants to 
confirm that these genes engender resistance to MLND in 
maize. We identified few lines which can serve as a poten-
tial donor in improving susceptible commercial lines into 
MLND resistant lines either through marker-assisted recur-
rent selection or GS.

Author contribution statement BD, DM, GM, BMP, 
and MG—conceived the experiment; BD, GM, MG, and 
DM—conducted the field evaluations and phenotyping; 
MG, KS, and RB—coordinated the GBS experiments; 
MG—carried out the GWAS analyses; MG, BD, DM, GM, 
MO, BMP, JMB, KS, and RB—interpreted the results and 
drafted the manuscript.

Acknowledgments The present study was supported by various 
projects, especially the DTMA, IMAS, WEMA, MLND-Africa pro-
jects funded by the Bill & Melinda Gates Foundation, USAID, and 
Syngenta Foundation for Sustainable Agriculture, besides the CGIAR 
Research Program on MAIZE. The authors would wish to thank CIM-
MYT field technicians at the different experiment stations in Kenya 
for managing trials; the management of Kenya Agricultural and Live-
stock Research Organization (KALRO) for giving us access to the 
experiment station; and CIMMYT laboratory technicians in Kenya for 
preparing samples for genotyping; and we also thank Dr. Edward S 

Fig. 5  Effect of the number 
of markers, and the number of 
individuals on the accuracy of 
genomic prediction for MLND 
resistance in the IMAS associa-
tion mapping panel



1967Theor Appl Genet (2015) 128:1957–1968 

1 3

Buckler and the Institute of Genomic Diversity, Cornell University for 
the high-density genotyping (GBS) and imputation service.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict 
of interest.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, 
Reeder R, Harju V, Glover R, Hany U, Souza-Richards R, Deb 
Nath P, Nixon T, Fox A, Barnes A, Smith J, Skelton A, Thwaites 
R, Mumford R, Boonham N (2013) Use of next-generation 
sequencing for the identification and characterization of Maize 
chlorotic mottle virus and Sugarcane mosaic virus causing maize 
lethal necrosis in Kenya. Plant Pathol 62:741–749

Adams IP, Harju VA, Hodges T, Hany U, Skelton A, Rai S, Deka MK, 
Smith J, Fox A, Uzayisenga B, Ngaboyisonga C, Uwumukiza 
B, Rutikanga A, Rutherford M, Ricthis B, Phiri N, Boonham N 
(2014) First report of maize lethal necrosis disease in Rwanda. 
New Dis Rep 29:22

Ali F, Yan J (2012) Disease resistance in maize and the role of molec-
ular breeding in defending against global threat. J Integr Plant 
Biol 54:134–151

Belcher AR (2009) The physiology and host genetics of quantitative 
resistance in maize to the fungal pathogen Cochliobolus heter-
ostrophus. Dissertation, North Carolina State University, Raleigh

Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, 
Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga 
J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J 
(2015) Genetic gains in grain yield through genomic selection 
in eight bi-parental maize populations under drought stress. Crop 
Sci 55:154–163

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buck-
ler ES (2007) TASSEL: software for association mapping of 
complex traits in diverse samples. Bioinformatics 23:2633–2635

Cabanas D, Watanabe S, Higashi CHV, Bressan A (2013) Dissecting 
the Mode of Maize Chlorotic Mottle Virus Transmission (Tom-
busviridae: Machlomovirus) by Frankliniella williamsi (Thysa-
noptera: Thripidae). J Econ Entomol 106:16–24

Castillo J, Hebert T (1974) Nueva enfermedad virosa afectando al 
maiz en el Peru. Fitopatologia 9(2):79–84 (in Spanish)

Chrisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Car-
rington JC (2000) Cloning of the Arabidopsis RTM1 gene, which 
controls restriction of long-distance movement of the tobacco 
etch virus. Proc Natl Acad Sci USA 97:489–494

Crossa J, Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, 
Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger 
M, Braun H-J (2010) Prediction of genetic values of quantitative 
traits in plant breeding using pedigree and molecular markers. 
Genetics 186:713–724

Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los 
Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink 
J-L, Lopez Cruz MA, Babu R (2013) Genomic prediction in 

maize breeding populations with genotyping-by-sequencing. G3 
3:1903–1926

Dekkers JCM (2007) Prediction of response to marker-assisted and 
genomic selection using selection index theory. J Anim Breed 
Genet 124:331–341

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, 
Mitchell SE (2011) A robust, simple genotyping-by-sequencing 
(GBS) approach for high diversity species. PLoS One 6:e19379

Flint-Garcia Sherry A, Thuillet A, Yu J, Pressoir G, Romero SM, 
Mitchell SE, Doebley J, Kresovich J, Goodman MM, Buckler ES 
(2005) Maize association population: a high-resolution platform 
for quantitative trait locus dissection. Plant J 44:1054–1064

Gao X, Becker LC, Becker DM, Starmer JD, Province MA (2010) 
Avoiding the high Bonferroni penalty in genome-wide associa-
tion studies. Genet Epidemiol 34:100–105

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, 
Buckler ES (2014) TASSEL-GBS: a high capacity genotyping 
by sequencing analysis pipeline. PLoS One 9(2):e90346

Gore MA, Chia J-M, Elsaire LJ, Sun Q, Ersoz ES et al (2009) The 
first-generation haplotype map of maize. Science 326:1115–1117

Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering 
plants: a tale of two activities. Trends Plant Sci 9:399–405

Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic 
relationship information on genome-assisted breeding values. 
Genetics 177:2389–2397

Hon WC, Criffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Anti-
freeze proteins in winter rye are similar to pathogenesis-related 
proteins. Plant Physiol 109:879–889

Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T (2010) Genetic and 
physical fine mapping of Scmv2, a potyvirus resistance gene in 
maize. Theor Appl Genet 120:1621–1634

Jones MW, Boyd EC, Redinbaugh MG (2011) Responses of maize 
(Zea mays L.) near isogenic lines carrying Wsm1, Wsm2, and 
Wsm3 to three viruses in the Potyviridae. Theor Appl Genet 
123:729–740

Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oro-
peza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, 
Ware D (2011) Genome-wide association study of quantitative 
resistance to southern leaf blight in the maize nested association 
mapping population. Nat Genet 43:163–168

Lorenzana R, Bernardo R (2009) Accuracy of genotypic value predic-
tions for marker-based selection in biparental plant populations. 
Theor Appl Genet 120:151–161

Louie R (1980) Sugarcane mosaic virus in Kenya. Plant Dis 
64:944–947

Lübberstedt T, Ingvardsen C, Melchinger AE, Xing Y, Salomon R, 
Redinbaugh MG (2006) Two chromosome segments confer mul-
tiple potyvirus resistance in maize. Plant Breed 125:352–356

Massman JM, Gordillo A, Lorenzana RE, Bernardo R (2013) Genom-
ewide predictions from maize single-cross data. Theor Appl 
Genet 126:13–22

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 
157:1819–1829

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, 
Buckler ES (2009) Association mapping: critical considera-
tions shift from genotyping to experimental design. Plant Cell 
21:2194–2202

Niblett CL, Clafin LE (1978) Maize lethal necrosis-a new virus dis-
ease of maize in Kansas. Plant Dis Rep 62:15–19

Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide 
nested association mapping of quantitative resistance to northern 
leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression anal-
ysis: A research tool, 2nd edn. Springer, New York



1968 Theor Appl Genet (2015) 128:1957–1968

1 3

Redinbaugh MG, Pratt RC (2009) Virus resistance. In Handbook of 
Maize: Its Biology. Springer, New York, pp 251–270

Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow 
F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE 
(2012) Genomic and metabolic prediction of complex heterotic 
traits in hybrid maize. Nat Genet. doi:10.1038/ng.1033

Romeis T, Piedras P, Jones JDG (2000) Resistance gene-dependent 
activation of a calcium-dependent protein kinase in the plant 
defense response. Plant Cell 12:803–815

SAS Institute Inc (2010) SAS 9.2 Intelligence Platform: System 
Administration Guide. SAS Institute Inc, Cary

Shi L, Xiangling L, Weng J, Zhu H, Liu C, Haoa Z, Zhoua Y, Zhanga 
D, Lia M, Cia X, Lia X, Zhang S (2014) Genetic characterization 
and linkage disequilibrium mapping of resistance to gray leaf 
spot in maize (Zea mays L.). Crop J 2:132–143

Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hile J, 
Goldbach RW, Prins M (2001) The tomato gene Sw5 is a mem-
ber of the coiled coil, nucleotide binding, leucine-rich repeat 
class of plant resistance genes and confers resistance to TSWV 
in tobacco. Mol Breed 7:151–161

Stange C, Matus JT, Elorza A, Arce-Johnson P (2004) Identification 
and characterization if a novel tobacco mosaic virus resistance N 
gene homologue in Nicotiana tabacum plants. Funct Plant Biol 
31:149–158

Sukumaran S, Xiang W, Bean SR et al (2012) Association mapping 
for grain quality in a diverse sorghum collection. Plant Genome 
J 5:126

Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds 
MP (2015) Genome-wide association study for grain yield 
and related traits in an elite spring wheat population grown 
in temperate irrigated environments. Theor Appl Genet 
128:353–363

Tao YF, Jiang L, Liu QQ, Zhang Y, Zhang R, Ingvardsen CR, Frei 
UK, Wang BB, Lai JS, Lubberstedt T, Xu ML (2013) Combined 
linkage and association mapping reveals candidates for Scmv1, 
a major locus involved in resistance to sugarcane mosaic virus 
(SCMV) in maize. BMC Plant Biol 13:162

Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of 
northern corn leaf blight resistance in maize with combined or 
separated training sets for heterotic groups. G3(3):197–203

Uyemoto JK, Bockelman DL, Clafin LE (1980) Severe outbreak of 
maize lethal necrosis disease in Kansas. Plant Dis 64:99–100

Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE 
(2011) Extent and genome-wide distribution of linkage disequi-
librium in commercial maize germplasm. Theor Appl Genet 
123:11–20

Vidal S, Cabrera H, Andersson RA, Fredriksson A, Valkonen JPT 
(2002) Potato gene Y-1 is an N gene homolog that confers cell 
death upon infection with potato virus Y. Mol Plant Microbe 
Interact 15:717–727

Vinayan MT, Babu R, Jyothsna T, Zaidi PH, Blümmel M (2013) A 
note on potential candidate genomic regions with implications 
for maize stover fodder quality. Field Crops Res 153:102–106

Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK, 
Kasina M, Mahuku G, Scheets K, Jeffers D (2012) First report of 
Maize chlorotic mottle virus and Maize lethal necrosis in Kenya. 
Plant Dis 96:1582

Wen W, Araus JL, Trushar S, Cairns J, Mahuku G, Banziger M, Tor-
res JL, Sanchez C, Yan J (2011) Molecular characterization of a 
diverse maize inbred line collection and its potential utilization 
for stress tolerance improvement. Crop Sci 51:2569–2581

Weng J, Liu X, Wang Z, Wang J, Zhang L, Hao Z, Xie C, Li M, Zhang 
D, Bai L, Liu C, Zhang S, Li X (2012) Molecular mapping of 
the major resistance quantitative trait locus qHS2.09 with simple 
sequence repeat and single nucleotide polymorphism markers in 
maize. Phytopathology 102:692–699

Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted 
selection using ridge regression. Genet Res 75:249–252

Xiao W, Zhai J, Fan S, Li L, Dai J, Xu M (2007) Mapping of genome-
wide resistance gene analogs (RGAs) in maize (Zea mays L.). 
Theor Appl Genet 115:501–508

Xie L, Zhang JZ, Wang Q, Meng CM, Hong J, Zhou XP (2011) 
Characterization of Maize Chlorotic Mottle Virus associated 
with maize lethal necrosis disease in China. J Phytopathol 
159:191–193

Yan JB, Shah T, Warburton M, Buckler ES, McMullen MD, Crouch 
J (2009) Genetic characterization of a global maize collection 
using SNP markers. PLoS One 4:e8451

Yan J, Warburton M, Crouch J (2011) Association mapping for 
enhancing maize (Zea mays L.) genetic improvement. Crop Sci 
51:433–449

Yu JM, Buckler ES (2006) Genetic association mapping and genome 
organization of maize. Curr Opin Biotechnol 17:1–6

Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design 
and statistical power of nested association mapping in maize. 
Genetics 178:539–551

Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redin-
baugh MG (2014) Genetic analysis of resistance to six virus dis-
eases in a multiple virus-resistant maize inbred line. Theor Appl 
Genet 127:867–880

Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, 
Ranc N, Reif JC (2012) Accuracy of genomic selection in 
European maize elite breeding populations. Theor Appl Genet 
124:769–776

Zhou J, Loh Y-T, Bressan RA, Martin GB (1995) The tomato gene 
Pti1 encodes a serine/threonine kinase that is phosphoryl-
ated by Pto and is involved in the hypersensitive response. Cell 
83:925–935

Zila CT (2014) Traditional and genomic methods for improv-
ing Fusarium ear rot resistance in maize. Dissertation, 
North Carolina State University. http://www.lib.ncsu.edu/
resolver/1840.16/9195

Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB (2013) A 
genome-wide association study reveals genes associated with 
Fusarium ear rot resistance in a maize Core Diversity Panel. G3 
3:2095–2104

http://dx.doi.org/10.1038/ng.1033
http://www.lib.ncsu.edu/resolver/1840.16/9195
http://www.lib.ncsu.edu/resolver/1840.16/9195

	Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm
	Abstract 
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Plant materials and field trials
	Collection and maintenance of virus isolates
	Artificial field inoculation and phenotyping
	Phenotypic data analyses
	Molecular data analyses
	Genome-wide association study (GWAS)
	Genomic selection

	Results
	Discussion
	Population structure and linkage disequilibrium
	Genome-wide association study for main effect QTL
	Putative candidate genes
	Genomic selection

	Conclusion
	Acknowledgments 
	References




