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ABSTRACT 

Fusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that 

reduces grain quality globally. Host resistance is the most suitable strategy for managing the 

disease. We report the results of genome-wide association study (GWAS) to detect alleles 

associated with increased resistance to FER in a set of 818 tropical maize inbred lines evaluated 

in three environments. Association tests performed using 43,424 single-nucleotide polymorphic 

(SNPs) markers identified 45 SNPs and 15 haplotypes that were significantly associated with 

FER resistance. Each associated SNP locus had relatively small additive effects on disease 

resistance and accounted for 1% to 4% of trait variation. These SNPs and haplotypes were 

located within or adjacent to 38 candidate genes, 21 of which were candidate genes associated 

with plant tolerance to stresses, including disease resistance. Linkage mapping in four bi-parental 

populations to validate GWAS results identified 15 quantitative trait loci (QTL) associated with 

F. verticillioides resistance. Integration of GWAS and QTL to the maize physical map showed 

eight co-located loci on Chromosomes 2, 3, 4, 5, 9 and 10. QTL on chromosomes 2 and 9 are 

new. These results reveal that FER resistance is a complex trait that is conditioned by multiple 

genes with minor effects. The value of selection on identified markers for improving FER 

resistance is limited; rather, selection to combine small effect resistance alleles combined with 

genomic selection for polygenic background for both the target and general adaptation traits 

might be fruitful for increasing FER resistance in maize.  



INTRODUCTION 

Fusarium ear rot (FER) is one of the most important food and feed safety challenges in maize 

production worldwide (Munkvold and Desjardins 1997).  Apart from reducing the quantity and 

quality of harvested maize, some of the Fusarium spp. produce mycotoxins, which are harmful, 

and can be fatal to humans and animals consuming contaminated grain (Missmer et al. 2006). 

More than 10 Fusarium spp. can cause ear rots, but the two most important are F. verticillioides 

[synonym F. moniliforme Sheldon] inciting FER and F. graminearum that causes Gibberella ear 

rot (GER) (Seifert et al. 2003; Mesterházy et al. 2012; Kebebe et al. 2014). Fusarium 

verticillioides is more prevalent in low rainfall, high humidity environments, common in tropical 

and subtropical maize production environments, while F. graminearum is predominant in cooler, 

high rainfall maize growing environments (Munkvold 2003). Infection by F. verticillioides can 

result in decreased grain yields, poor grain quality, and contamination by the mycotoxin 

fumonisin, a suspected carcinogen associated with various diseases in livestock and humans 

(Munkvold and Desjardins 1997; Fandohan et al. 2003; Munkvold 2003; Presello et al. 2008). 

Fusarium verticillioides can survive in soil, healthy seed and plant residue, and infection of 

maize can be initiated from seedborne or airborne inoculum as well as systemic infection from 

the soil through roots to kernels (Morales-Rodríguez et al. 2007). Because of the high rate of 

maize production for subsistence in many developing countries, the solution to the problems of 

FER and fumonisin contamination is not to strengthen regulations, but rather to reduce fungal 

infection and mycotoxin levels in grain. The best strategy for controlling FER and reducing 

incidence of fumonisin contamination is the development and deployment of maize varieties 

with genetic resistance. Pre-harvest host resistance is economical to famers, leaves no harmful 

residue in food or the environment, and is compatible with other control measures. This strategy 



requires a clear understanding of the genetics of resistance, and the identification of alleles 

significantly contributing to reduced F. verticillioides infection and colonization, and fumonisin 

production (Mukanga et al. 2010).  

Resistance to FER is quantitatively inherited and additive, dominant, and additive by 

dominant effects are important (Boling and Grogan 1965). Mapping studies using bi-parental 

populations have shown that resistance to FER is controlled by minor genes with relatively small 

effects that vary between environments and are not consistent between populations (Mesterházy 

et al. 2012). Robertson-Hoyt et al. (2006) and Bolduan et al. (2009) reported genotypic 

correlations between FER resistance and fumonisin accumulation of 0.87 in North Carolina and 

0.92 in Germany, respectively, indicating that visual selection of FER resistance should be 

effective in simultaneously reducing fumonisin contamination. Although genetic variation for 

resistance to FER exists among maize inbred lines and hybrids, there is no evidence of complete 

resistance to either FER or fumonisin contamination in maize (Clements and Kleinschmidt 2003; 

Clements et al. 2004). The search for novel resistance genes against F. verticillioides is a very 

important activity in the quest to find a lasting solution to FER problems in maize production. 

Identification of specific allelic variants that confer improved resistance would permit maize 

breeders to select for recombinant chromosomes in backcross progeny that have desired target 

resistance allele sequences in coupling phase with the favorable elite polygenic background, 

facilitating the improvement of disease resistance without decreasing agronomic performance. 

Several studies have identified quantitative trait loci (QTL) associated with resistance to F. 

verticillioides and subsequent reduced fumonisin accumulation (Robertson-Hoyt et al. 2006; 

Bolduan et al. 2009). For example, linkage-based mapping studies using F2:3 populations derived 

from two resistant parents and a common susceptible parent identified 9 and 7 QTL associated 



with F. verticillioides resistance, and 3 of the QTL were common across the two populations 

(Pérez-Brito et al. 2001). In another study with two populations sharing a common resistant 

parent, a common QTL was detected on chromosome 4; this QTL was validated in an 

independent near isogenic line (NIL) population (Li et al. 2011; Chen et al. 2012). Other QTL 

mapping studies have also revealed many QTL for F. verticillioides resistance that are stable 

across environments (Robertson-Hoyt et al. 2006; Ding et al. 2008). Using the GWAS method, 7 

SNPs were identified for FER resistance based on a diverse inbred line population comprised of 

1,687 maize inbred lines (Zila et al. 2013, 2014). These studies revealed the presence of genetic 

variation for FER and the potential for identifying and deploying molecular markers for 

improving FER resistance in maize.  

GWAS has shown great potential for detecting QTL with high resolution in diverse 

germplasm (Buntjer et al. 2005). In Arabdopsis thaliana, GWAS was conducted using 213,497 

SNPs and 473 accessions to reveal a climate-sensitive quantitative trait loci (Li et al. 2010). In 

maize, GWAS has successfully been used to identify several casual genomic loci for different 

traits (Weng et al. 2011; Wang et al. 2012b; Liu et al. 2014; Samayoa et al. 2015). However 

GWAS also has shortcomings, such as detection of false positives due to presence of population 

structure; fortunately, several advanced statistical methods have been developed to reduce the 

false positive rate (Andersen et al. 2005; Yu et al. 2006a; Larsson et al. 2013). Compared to 

traditional linkage-based analyses, association mapping offers higher mapping resolution while 

eliminating the time and cost associated with developing synthetic mapping populations (Flint-

Garcia et al. 2005; Yu et al. 2006b). On the other hand, linkage mapping generates low rates of 

false positive results, which offset the limitation of so few alleles in offspring populations (Jiang 

and Zeng 1995; Ding et al. 2015b). Combining GWAS and linkage mapping could exploit the 



complementary strengths of both approaches to identify casual loci (Fulker et al. 1999; 

Pedergnana et al. 2014; Motte et al. 2014). 

In this study, we used GWAS to identify genomic regions associated with FER resistance in 

tropical maize germplasm populations that were evaluated across three environments in Mexico. 

GWAS identified genomic regions were validated through linkage mapping using four bi-

parental populations. Furthermore, we identified a set of tropical maize inbred lines with high 

levels of FER resistance that can be used to improve FER in maize breeding programs.  

 

MATERIALS AND METHODS  

Germplasm materials and experimental design 

A collection of 940 elite tropical maize inbred lines assembled from CIMMYT maize breeding 

programs located in Zimbabwe, Kenya, Colombia and Mexico; and from the physiology, 

pathology and entomology programs was evaluated for disease resistance (Semagn et al. 2012; 

Wen et al. 2011). One elite maize inbred line, CML155, was used as a resistant check. This line 

had previously been identified as highly resistant to FER following multiple years of visual 

evaluation under field conditions in CIMMYT‟s experimental station of Agua Fria (AF), Mexico. 

Four bi-parental derived populations, that included a doubled haploid (DH) population composed 

of 201 lines derived from crossing CML495 (resistant) to LA POSTA SEQ. C7 F64-2-6-2-2-B-

B-B (susceptible), designated POP1; and F2:3 bi-parental populations developed from three 

resistant parents (CML492, CML495 and CML449) crossed to a single susceptible parent 

(LPSMT), and named POP2 (277 families), POP3 (268 families) and POP4 (272 families), 

respectively, were evaluated for resistance to FER (Table S1). 



The GWAS panel of 940 inbred maize lines was screened for FER resistance in two locations; 

CIMMYT‟s experimental station of AF, located in the state of Puebla in Mexico (longitude 

97
o
38'W; latitude 20

o
28'N; elevation 100-110 masl (meters above sea level ) in 2010 and 

2011(AF10 and AF11), and CIMMYT‟s experimental station of Tlaltizapan (TL) located in the 

state of Morelos, Mexico (longitude 99
o
7'W; latitude 18

o
41‟N; elevation 940 masl) in 2011 

(TL11). Entries were divided into four sets on the basis of maturity. Sets were randomized within 

the field and each set was blocked using an α-lattice design and replicated three times. Twenty 

seeds were planted in two-meter row plots, with 0.2 m between plants in a row and 0.75 m 

between rows. Two seeds were planted per hill and later thinned to a single plant to give a total 

of 10 plants per plot.  

Fusarium ear rot inoculations and evaluation  

The experiments were artificially inoculated with a local toxigenic F. verticillioides isolate using 

the nail punch /sponge technique (Drepper and Renfro 1990), approximately 7 days after 

flowering. A single-spore isolate of F. verticillioides was increased on sterile maize kernels, 

incubated for 14 days at 25°C. After incubation, the spores were harvested, and concentration 

estimated using a haemocytometer and adjusted to 5 × 10
6 

spores mL
-1

 in sterile distilled water 

with 0.2 ml/liter Tween-20 surfactant (poly-oxyethylene 20-sorbitan monolaurate). The primary 

ear of each plant in a plot was inoculated using a nail punch/sponge inoculation method with a 

suspension that contained 5 × 10
6 

spores mL
-1

 about seven days after flowering. The same 

inoculation method was used for both the GWAS panel and QTL mapping population. 

At maturity, inoculated ears from each plot were harvested by hand and individually rated for 

FER symptoms using a seven-point scale, where 1 = no visible disease symptoms, 2 = 1-3%, 3 = 

4-10%, 4 = 11-25%, 5 = 26-50%, 6 = 51-75%, and 7 = 76-100% of kernels exhibiting visual 



symptoms of infection (Reid et al. 1995). The overall response of each line, defined as 

percentage of infected area (PIA) was calculated using the formula described by Pérez-Brito, et 

al. (2001). The average FER severity score of each line was named EarRot1-7. During harvesting, 

another variable, ear rot aspect (ERAspect), was assessed on per plot basis using a 1-5 scoring 

scale; where 1 = no visible disease symptoms on kernels, 2 = 1-10%, 3 = 11-20%, 4 = 21-30%, 

and 5 = 31% or more of the kernels infected (Drepper and Renfro 1990). ERAspect is an 

assessment of overall cleanliness of the cob (presence or absence of general ear rot symptoms). 

Other variables evaluated included maturity measures as days to anthesis (DTA) and silking 

(DTS), plant height, ear height, bad husk cover, and stem lodging. Bad husk cover was rated on a 

1 to 5 scale, where 1 represent husks tightly arranged and extending beyond the ear tip (very 

good husk cover) and 5 = ear tips exposed (bad husk cover). 

Genotypic data 

Total DNA was extracted from young leaves using CTAB method (CIMMYT 2005), and DNA 

quality, purity and quantity for each sample was checked using gel-electrophoresis and 

spectrophotometer (NanoDrop ND8000, Thermo Scientific). A total of 854 maize inbred lines 

with good quality DNA were genotyped using an Illumina MaizeSNP50 BeadChip which 

contained 56,110 SNP markers (Ganal et al. 2011). The SNP genotyping was performed on an 

Illumina Infinium SNP genotyping platform at Cornell University Life Sciences Core 

Laboratories Center using the protocol developed by the Illumina Company. The genotypic data 

summary (allele frequency, heterozygous rate and missing rate) were calculated by PLINK v1.07 

software (Purcell et al. 2007). 

The four bi-parental populations used for linkage mapping were genotyped by low density 

markers from the Kompetitive Allele Specific PCR (KASP
TM

) genotyping system of LGC 



Company (http://www.lgcgroup.com/) (Semagn et al. 2014). A total of 1250 SNPs were 

screened to identify markers polymorphic between the two parental lines. Of the polymorphic 

SNP markers, 200 were selected and used to genotype the entire population. Markers with allele 

frequency between 0.4 to 0.6 for both DH and F2:3 populations were included in the analysis.  

Statistical analyses 

Descriptive statistics (such as mean, range, skewness and kurtosis) and correlations of 

phenotypic data were conducted in Excel 2010. Genetic correlation, and best linear unbiased 

estimates (BLUEs) were calculated using SAS (SAS Institute 2011) with multiple environments 

traits analysis package (META) which can be found on CIMMYT Dataverse 

(http://hdl.handle.net/11529/10217) (Vargas et al. 2013). For the single environment BLUE, a 

mixed linear model was performed including line as a fixed effect, days to silking as a fixed 

linear covariate and replication and block within replication as random effects. In the combined 

experimental analysis, each combination of location and year was considered an environment, 

with a mixed linear model including line as a fixed effect, days to silking (DTS) as a fixed linear 

covariate, and year, line x environment interaction, replication within environment, and block 

within replication as random effects. 

The Analysis of variance (ANOVA) was conducted in R software with anova (lm) function 

(R Core Team 2015), the model for ANOVA was as follows; 

Single environment ANOVA: Pheno ~ Rep + Block:Rep + Entry  

Multi environment ANOVA: Pheno ~ Env * Entry + Rep:Env + Block:(Rep:Env) 

Where Pheno was phenotypic data; Env was environments which was the combination of 

location and year; Rep was replication; Block was block in α-lattice design; Entry was the inbred 

lines used in this study. 

http://www.lgcgroup.com/
http://hdl.handle.net/11529/10217


Variance components were estimated using VarCorr function after fitting the linear mixed 

model (lmer) with the REML option in R software (R Core Team 2015). The single environment 

repeatability (H
2
) was estimated using the following formulae (Knapp et al. 1985):  

H
2
=σ

2
G / (σ

2
G+σ

2
e/r), 

Broad sense heritability (H
2
) was estimated using the formulae below (Knapp et al. 1985):  

H
2
=σ

2
G / (σ

2
G+σ

2
GE/E+σ

2
e/lr), 

Where σ
2

G is genetic variance, σ
2

GE is genotype x environment interactions variance, σe
2
 is 

error variance, and E is number of environments, r is number of replication in each environment.  

Association analysis 

A subset of 2,000 SNP markers were randomly selected from 10,736 SNPs that remained after 

removing SNPs with missing values >10 %; minor allele frequency of <10 %; and physical 

position interval < 50Kb. This subset of SNP markers was used for STRUCTURE analysis (Yu 

et al. 2009). The population structure was determined using an admixture model with correlated 

allele frequency in software STRUCTURE v2.3.3 (Pritchard et al. 2000). A burn-in of 10, 000 

iterations followed by 100,000 Monte Carlo Markov Chain (MCMC) replicates was conducted to 

test k values (number of subpopulations) in the range of 2-9. Each k was replicated 4 times, and 

most lines were assigned into clusters with a probability >0.6 (Falush et al. 2003). 

Principal Component Analysis (PCA) was conducted in Eigensoft V3.0 software (Price et 

al. 2006; Patterson et al. 2006). Genetic distance-based neighbor joining (NJ) analysis and a 

genetic kinship matrix were conducted using TASSEL V3 (Bradbury et al. 2007) and the tree 

visualized using FigTree v1.3.1 (Rambaut and Drummond. 2009). Linkage disequilibrium (LD) 

measured as D', were calculated using TASSEL software (Bradbury et al. 2007). Haplotype was 



built using LD based method as described by Gabriel et al. (2002), and SNPs are considered to 

be in the same haplotype or in “strong LD” if the one-side upper 95% confidence bound on D‟ 

was > 0.98 and the lower bound was above 0.7), and was calculated using PLINK v1.07 software 

(Purcell et al. 2007).  

A mixed linear model that included BLUEs, marker, kinship matrix (K) and principal 

component analyses (PCA) were conducted using TASSEL software (Bradbury et al. 2007). 

Haplotype generated by PLINK, and haplotype genotypes were used to conduct association 

mapping using the mixed linear model with PCA and Kinship in TASSEL software. 

QTL mapping in bi-parental populations 

Linkage maps were constructed using IciMapping v3.2 with Kosambi method for map distance 

calculation (Kosambi 1944; Wang et al. 2012a). The total map length for POP1 (DH population) 

was 1260cM and included 166 SNPs with and the average maker interval was 8.83cM; the map 

length of POP2 was 991cM and included 154 SNPs and the average marker interval was 8.93cM. 

Linkage maps were not constructed for POP3 and POP4 as the number of retained markers was 

small (118 for POP3 and 93 for POP4). Inclusive Composite Interval Mapping (ICIM) method in 

IciMapping v3.2 was used for QTL mapping (Li et al. 2008; Wang et al. 2012a).  ICIM retains 

all advantages of composite interval mapping (CIM) over interval mapping and avoids the 

possible increase of sampling variance and the complicated background marker selection process 

that are in CIM  (Li et al. 2007, 2008).  The step of ICIM was set to 1cM, and the LOD threshold 

was set to 2.5. The total proportion of phenotypic variance explained by the detected QTL was 

calculated by fitting all significant SNPs simultaneously in a linear model to obtain R
2

adj. The 

proportion of the genotypic variance explained by all QTL was calculated as the ratio of pG = 

R
2

adj/h
2
 (Gowda et al. 2015). Single Marker Analysis (SMA) method in IciMapping V3.1 



software was used for POP3 and POP4 QTL mapping, since the number of polymorphic markers 

were not enough for linkage map constriction. BioMercator V3.0 software (Arcade et al. 2004) 

was used to integrate significant markers to the maize physical map of the B73 reference genome 

(B73 RefGen_v1). The physical positions and sequence of SNP markers were obtained from the 

Illumina public ftp site (ftp://ussd-

ftp.illumina.com/Whole%20Genome%20Genotyping%20Files/Archived_non-

Human_Products/Maize_SNP50/). 

Based on GWAS results, the sequences flanking SNP markers significantly associated with FER 

resistance were used to perform BLAST searches against the „B73‟ RefGen_v2 (MGSC) 

(http://blast.maizegdb.org/home.php?a=BLAST_UI) to obtain the physical position of significant 

SNPs.  

Data availability 

The original genotype and phenotype of the GWAS population are available in supplementary 

Files S1 and S2 and the original data of the four bi-parental populations are available in 

supplementary File S3 (POP1), S4 (POP2), S5 (POP3) and S6 (POP4). 

 

RESULTS 

Phenotypic data analysis of GWAS panel  

Significant phenoytypic variation for FER was observed in both the Agua Fria and Tlaltizapan 

experiments. The mean ear rot severity ranged from 0% to 87% with an overall mean of 22.96% 

in TL11; from 0% to 47% with an overall mean of 7.76% in AF11, and 0% to 61% with an 

overall mean of 9.6% in AF10. Disease severity was higher in Tlatizapan than Agua Fria, 

http://blast.maizegdb.org/home.php?a=BLAST_UI


possibly revealing differences in aggressiveness of F. verticilioides strains used.  In the 

combined analysis, mean ear rot ranged from 0% to 74% with an overall mean of 16.03% (Table 

1). The distribution of FER scoring in individual and combined environments was close to 

normal with a skew towards the lower level of infection (Figure S1).  Reflect kurtosis analysis 

revealed that ear rot resistance was continuously distributed, revealing the quantitative nature of 

F. verticillioides resistance (Table 1, Figure S1). Both genotypic components of variance (σ
2

G) 

and genotype × environment interaction (σ
2

GE) were significant (P < 0.01), from the combined 

ANOVA analysis, and σ
2

G was also significant in the three single environment analysis. The 

repeatability (H
2
) of FER scores was generally high, ranging from 0.89 in TL11 to 0.71 and 0.68 

in AF11 and AF10, respectively. In combined analysis, the broad-sense heritability (H
2
) of the 

trials was 0.66, indicating that F. verticillioides resistance was controlled by genetic factors and 

that the data could confidently be used for accurate mapping of F. verticillioides resistance genes. 

Genetic and phenotypic correlation between ear rot aspect, ear rot score and PIA were 

significant, ranging from r = 0.90 to 0.98 (Table S2). Therefore, subsequent data and GWAS 

analyses were conducted using PIA as a FER parameter. Genetic and phenotypic correlations 

between environments were highly significant, and the phenotypic correlation between combined 

mean and mean of the three single environments were significant (Table 1). Low but significant 

correlations were observed between FER (PIA) and days to silking (Table 2). However, a 

moderate genetic correlation (r = 0.38) was observed between FER resistance and stem lodging. 

This is expected as F. verticillioides can grow within the maize plant as an endophyte, and can 

become pathogenic and incite stalk rots when conditions become stressful to the plant. 

Response of 940 maize inbred lines to FER revealed several lines that consistently had mean 

disease severity scores <5% across the three environments. Analysis of combined phenotypic 



data from the different environments identified 63 maize inbred lines that were highly (PIA<5%) 

resistant to FER (Table S3). These tropical inbred lines can immediately be used as a source of 

FER resistance in breeding programs. 

Phenotypic data analysis of QTL mapping populations  

Significant phenotypic variation for FER was observed for the four bi-parental populations 

(Table S5). For all populations, genotypic components of variance (σ
2

G) were significant (P < 

0.01) from the single environment ANOVA analysis. For combined ANOVA, both genotypic 

components of variance (σ
2

G) and genotype by environment interaction (σ
2

GE) were significant (P 

< 0.01) for POP1 and POP2, revealing that Fusarium verticillioides populations in the two 

environments might have been different. In combined analysis, the broad-sense heritability (H
2
) 

of the trials was 0.74 for POP2 and 0.52 for POP1. The repeatability was generally high for each 

single environment, for example, the repeatability of POP1 in TL12A environment was 0.73 and 

in AF12A was 0.69. Those results indicate the data could confidently be used for QTL mapping. 

Genotypic characterization of GWAS panel 

A total of 56,110 SNPs were generated for 854 maize inbred lines using the Illumina maize 

SNP50 BeadChip. The number of SNP markers per chromosome ranged from 3,965 SNPs on 

chromosome 10 to 8,625 SNPs on chromosome 1 (Figure 1). The average SNP missing value 

was 7.0% and 2,112 SNPs (3.76%) had a missing value >40%. Of the 56,110 SNPs, 14.6% had a 

MAF (minor allelic frequency) < 0.05, while 55.8% had a MAF >20%. Most of the markers 96.3% 

had a heterozygous rate <2.5%, and only 0.01% had a heterozygosity >40%. After eliminating 

SNP markers with missing value >40% and MAF less than 5%, a total of 43,424 SNPs were 

retained for GWAS. 



From the 940 maize inbred lines evaluated against FER, 818 lines were included in GWAS 

analysis, after removing lines with >20% heterozygosity and those with >20% missing SNP 

markers (Figure S2). Population structure estimated using 2,000 random SNPs and the software 

STRUCTURE v2.3.3 divided the inbred lines into three sub-groups (Figure 2). Using k=3, 97.3% 

of the maize inbred lines were assigned to three groups, and only 6.8% of the lines were assigned 

into mixed population (Figure 2). The largest subgroup (blue color in Figure 2 of the K=3) was 

composed on germplasm coming from different breeding programs of CIMMYT, including the 

lowland breeding program, physiology, pathology, and programs in Africa . Most inbred lines in 

the second subgroup (red color in Figure 2 of K=3) comprised of germplasm derived from 

CIMMYT‟s drought tolerant population LaPostaSeq. The third subgroup (olive green color in 

Figure 2 of K=3) contained germplasm mainly from CIMMYT‟s lowland breeding program. 

Neighbor-joining tree constructed using 43,424 SNP markers and 818 maize inbred lines 

clustered the lines into three major groups (Figure S3), and the grouping was confirmed using 

PCA analysis (Figure S4). The Delta K result from STRUCTURE analysis and the absolute 

difference of eigenvalue between PCs indicted there were three major subgroups in the GWAS 

panel (Figures 2, S5). The results obtained following STRUCTUE, PCA and NJ tree cluster 

analyses were consistent; therefore, the first 3 PCA were used as a covariate in the mixed linear 

model in GWAS analysis.  

Association mapping for Fusarium ear rot resistance 

GWAS analysis using combined phenotypic data identified 45 SNPs that were significantly 

associated with FER resistance with p-value < 10
-3

 (Figure 3a). The markers were distributed on 

all chromosomes except chromosome 7; and the number of SNPs per chromosome ranged from 

one on chromosome 8 to 14 on chromosome 10.  The most significant SNP was located on 



chromosome 10 (PZE-110022154) with the lowest p-value (p < 5 x 10
-5

) and it explained 2.06% 

of the phenotypic variation. The second SNP with lowest p-value was located on chromosome 5 

and it also explained 2.06% of the phenotypic variation. Detailed information of 45 SNPs 

significantly associated with FER resistance is provided in Table 3. Genome-wide Manhattan 

plots for single environment analysis are attached (Figure S6). Quantile-quantile plots (QQ plots) 

showed that population structure was controlled well by the mixed linear model (Figure S7). 

Haplotype built based on linkage disequilibrium as described by Gabriel et al. (2002), 

resulted in 7,063 haplotypes (Table S4). The maximum number of markers per haplotype was 19, 

the minimum 2, and the average number was 2.96 SNPs per haplotype. Haplotype-based GWAS 

in a mixed linear model (MLM) identified 15 haplotypes that were significantly associated with 

FER resistance and these were distributed in bin 2.05, 5.03/5.04, 7.02, 8.03/8.04, and 10.03 

(Figure 3b).  Haplotype analysis increased the power of marker detection; for example, 

haplotype 5076 on chromosome / bin 7.02 that was significantly associated with FER resistance 

(p-value = 4.45×10
-7

) was not detected in single marker GWAS analysis (Table 4). However, 

some markers were detected by both single marker and haplotype based GWAS analysis. 

Haplotype 4168 on chromosome 5 accounted for 3.1% of variation for FER and the two markers 

PZE-105116484, PZE-105116502 associated with this haplotype explained 2.1% and 1.8% of 

phenotypic variation for FER, respectively (Table 4). 

QTL mapping of Fusarium ear rot resistance  

Five QTL were detected in the DH population (POP1); two on chromosome 1 and one each on 

chromosomes 2, 3 and 5 (Table 5). The QTL on chromosome 2 accounted for 15.41% of the total 

phenotypic variation observed for FER in this population; while the QTL on chromosome 5 

explained 13.56% of the phenotypic variation (Table 5). Combined, the five QTL detected in 



POP1 explained 49% of the total phenotypic variance observed for FER. For POP2, an F2:3 

population, six QTLs were detected, that together accounted for 25% of the observed phenotypic 

variation. The QTL on chromosome 1 accounted for 11.36% of the phenotypic variation for FER 

resistance. The QTL in bin 4.03/04 explained 9.27% of the phenotypic variance, while that in bin 

10.03 accounted for 7.82% of the phenotypic variance (Table 5). Single Marker Analysis (SMA) 

was used for QTL mapping for POP3 and POP4 as few polymorphic markers were detected in 

these populations. For POP3, six markers were significantly associated with FER resistance and 

these were distributed in three regions of chromosome 5; bins 5.03, 5.04 and 5.05 (Table 6).  The 

phenotypic variation for FER explained by these markers ranged from 4.56% to 6.73%, revealing 

that these were minor QTL. The SNP in bin 5.04 had the greatest effect, explaining 6.73% of the 

observed phenotypic variance for FER. For POP4, four markers were associated with FER 

resistance and these were in bin 2.04, 2.06 and 2.07 (Table 6). The phenotypic variation 

explained by these markers ranged from 12.56% to 15.84% and the SNP in bin 2.07 had the 

largest effect, explaining 15.84% of the phenotypic variance for FER resistance (Table 6). 

 

Forty-five single SNP markers and 15 haplotypes identified through GWAS, together with 15 

QTL identified through linkage mapping were integrated onto maize physical map using the 

software BioMereator V3.0 (Sosnowski et al. 2012). The map generated by the software was 

convenient for visualizing QTL and significant SNPs together.  Eight common loci were 

identified on six chromosomes; on chromosome/bin 2.04, 3.06, 4.04, 4.08, 5.03, 5.04, 9.01, and 

10.03 (Figure 4). The QTL on chromosome 2 in bin 2.04 was detected in two bi-parental 

population as well as single marker GWAS. The chromosome 5 (bin 5.04) locus was detected in 



one bi-parental population and by both single marker and haplotype GWAS. The locus on 

chromosome 10 bin 10.3, contained 14 significant SNP markers, one haplotype and one QTL. 

DISCUSSION 

Resistance donor 

Developing host resistance is the preferred strategy for managing FER, especially for 

smallholder farmers across the tropics, who largely produce maize for own consumption, and 

often lack resources to adopt other control strategies. However, effective use of this strategy 

requires identification of sources of resistance that are stable and effective across environments. 

We evaluated 940 maize inbred lines in three environments and identified 63 inbred lines that 

were highly resistant to F. verticillioides. These sources of FER resistance complement a few 

that have been reported in tropical germplasm (Pérez-Brito et al. 2001; Small et al. 2012). The 

broad-sense heritability (H
2
 = 0.66) was high, revealing that FER resistance was genetically 

controlled, thus, significant improvements for FER resistance can be achieved through breeding. 

Furthermore, the 63 inbred lines resistant to FER constitute a valuable tool for understanding the 

genetic basis and architecture of FER resistance in tropical maize germplasm. These lines should 

be evaluated in multiple environments to confirm stability of FER resistance.  

 QTL for Fusarium ear rot resistance 

Forty-five SNPs and 15 haplotypes associated with FER resistance were identified through single 

marker and haplotype based GWAS and fifteen QTL were identified through linkage mapping in 

four bi-parental populations. Using the software BioMereator V3.0, eight loci, containing 

significant markers from GWAS and linkage mapping were identified (Figure 4). Six loci on 

chromosomes / bin 3.06, 4.04, 4.08, 5.03; 5.04 and 10.03 are in regions that have previously 



been reported (Chen et al. 2012; Ding et al. 2008; Li et al. 2011; Pérez-Brito et al. 2001; 

Robertson-Hoyt et al. 2006; Zhang et al. 2007), while two loci, on chromosomes /bin 2.04 and 

9.01 are new loci, identified in this study. Two of the loci on chromosomes 4.04 and 9.01 are in 

regions containing genes encoding putative proteins of unknown function, while six loci are in 

regions that have been associated with stress tolerance, including FER resistance. Results from 

this study concur with previous reports (Boling and Grogan 1965; Zila et al. 2014) that FER 

resistance is a complex trait conditioned  by multiple genes with minor effects.  

The loci on chromosome 5.04 contained two significant SNPs, one haplotype and a QTL 

detected through linkage mapping. This chromosome region has previously been reported in 

three independent QTL mapping studies (Pérez-Brito et al. 2001; Robertson-Hoyt et al. 2006; 

Ding et al. 2008). Candidate gene analysis revealed that this QTL was in a region containing a 

putative protein encoding a glucose/ribitol dehydrogenase protein that catalyzes the oxidation of 

D-glucose to D-beta-gluconolactone using NAD or NADP as a coenzyme in the cell 

development. This gene belong to a subset of short-chain dehydrogenases and reductases family 

of genes which are involved in different biochemical processes including pathogen toxin 

reduction (Meeley et al. 1992; Moummou et al. 2012).  

The loci on the long arm of chromosome 4 (bin 4.08), detected through both GWAS and 

linkage mapping has previously been reported (Li et al. 2011; Chen et al. 2012). Markers within 

this locus localized to a putative protein of unknown function from maize. However, blastp 

analysis revealed that it had high homology to Arabidopsis 2OG-Fe (II) oxide reductase, a gene 

that is involved in regulating giberellic acid (GA) and abscisic acid (ABA) biosynthesis, that are 

involved in plant tolerance to stress, including disease resistance (van Damme et al. 2008; Han 

and Zhu 2011). Furthermore, chromosome 4.08 is a hot spot region for disease resistance in 



maize and has been found to harbor resistance QTL to 8 maize diseases (Wisser et al. 2006). 

This would be a good target for developing markers to simultaneously introgress multiple 

disease resistance genes. 

The chromosome 10.03 loci containing 13 SNPs and one QTL is located in a region 

conditioning resistance to multiple maize disease, including rp1 and rp5 that confers resistance to 

common rust (Wisser et al. 2006). The candidate with the lowest p-value in this region encoded 

an MADS-box transcription factor (Parenicová et al. 2003). MADS-box family genes are 

involved in controlling major aspects of plant development, including embryo and seed 

development (Gramzow and Theissen 2010), and may increase seed vigor and subsequently 

increase tolerance to diseases. 

Other important resistance loci identified in this study included chromosomes 3.06 and 5.03. 

These two loci have previously been reported associated with resistance to Fusarium ear rot in 

two QTL mapping studies (Robertson-Hoyt et al. 2006; Ding et al. 2008). The locus on bin 3.06 

encoded a dense granule Gra7 protein and the bin 5.03 locus was a putative protein of an 

unknown function. In addition, two new loci were identified, on chromosome 2.04 and 9.01. The 

chromosome 2.04 locus was associated with a plant peroxidase gene, that is involved in cell wall 

fortification (Kolattukudy et al. 1992). The chromosome 9.01 locus encoded a protein of 

unknown function. Although many SNPs localized to genic regions, the currently limited 

understanding of pathways contributing to FER resistance restricts our ability to precisely predict 

what genes might be involved in resistance to this complex disease. However, information from 

this study provides a basis for further research into elucidating the genetic architecture and 

pathways leading to FER resistance in maize.   

Haplotype based GWAS analysis 



Because of the rapid LD between markers, haplotype analysis may provide more detection 

power compared to single marker GWAS and is more practical for breeding (Yan et al. 2011). 

Four methods are commonly used to build haplotypes (Gabriel et al. 2002; Yan et al. 2009; Gore 

et al. 2009; Lu et al. 2010, 2011; Ding et al. 2015a); (1) use of a fixed number of markers as a 

window to slide across the chromosome to build the haplotype; (2) use of a fixed physical 

distance interval of 10Kb in maize to build haplotype; (3) use of gene based physical position to 

build haplotype; and (4) use of  LD information to put high LD markers together to constitute a 

haplotype. The marker density in our study was medium to high so we choose the LD based 

haplotype build method. Using this approach, haplotype GWAS detected some resistance loci 

that were not detected by single marker GWAS, whereas the single marker result was reflected in 

haplotype based GWAS. This indicates that haplotype based GWAS has a high marker detection 

efficiency but require high density markers to build a haplotype. On-going genotyping by 

sequencing projects will furnish enough marker density to exploit the advantages of haplotype 

based GWAS. 

Candidate genes co-localized with associated SNPs 

SNPs and haplotypes associated with FER resistance were located within or adjacent to 38 

putative candidate genes which were obtained from the MaizeGDB (http://www.maizegdb.org/) 

genome browser based on physical position of significant SNPs, MaizeCyc database version 2.0 

(http://maizecyc.maizegdb.org/). Phytozome database 

(http://phytozome.jgi.doe.gov/pz/portal.html) that was used for defining relevant pathways and 

annotating possible functions of candidate genes (Caspi et al. 2010) could annotate functions to 

21 out of the 38 candidate genes (Table 3, Table 4). Thirteen of the 45 SNPs localized to 

intergenic regions, ten were inside exons, nine were located in introns and nine were located in 

http://maizecyc.maizegdb.org/


promoters; five localized to the 3‟ untranslated region and five to the 5‟ untranslated region 

(Table 3). The most significant SNP on chromosome / bin 5.04 was in a region associated with a 

gene encoding a glucose/ribitol dehydrogenase, a protein that catalyzes the oxidation of D-

glucose to D-beta-gluconolactone using NAD or NADP as a coenzyme. This gene family is a 

subset of short-chain dehydrogenases and reductases, involved in pathogen toxin reduction 

(Meeley et al. 1992; Moummou et al. 2012). These results reveal the complex nature of FER 

resistance in tropical maize, and indicate that various mechanisms might be involved in 

conditioning FER resistance, including complex biosynthesis process, which also might include 

interactions between multiple metabolic pathways.  

Conclusion 

This study identified a set of inbred lines that can potentially be used as sources of resistance 

to develop hybrids with resistance to FER. Further validation of the potential sources of 

resistance in multiple environments is required, but the small number of inbred lines makes this 

process cost-effective. Eight loci harbouring FER QTL were identified through integrating 

GWAS and linkage mapping results.  Two are new loci while six co-localized to loci that have 

previously been described (Chen et al. 2012; Ding et al. 2008; Li et al. 2011; Pérez-Brito et al. 

2001; Robertson-Hoyt et al. 2006; Zhang et al. 2007). Some SNPs associated with these loci 

localized to within or close to genes with known function. Candidate gene analyses for 

significant SNPs provided targets for further research to elucidate mechanisms of FER resistance. 

Our results confirmed earlier reports that many genes are involved in FER resistance.  
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Table 1 Descriptive statistics and correlation of Percentage of Infected Area (PIA) parameter for Fusarium ear rot resistance for the 

GWAS panel 

Env 
Mean 

(%) 
Range (%) SD CV Skewness Kurtosis H

2
 Correlation σ

2
G σ

2
GE 

TL11 22.96 0-87 21.4 93.2% 1.1875 0.6274 0.89 1 0.64** 0.34** 0.040** - 

AF11 7.76 0-47 9.49 122.3% 2.4636 6.8599 0.71 0.54** 1 0.58** 0.016** - 

AF10 9.59 0-61 8.99 93.7% 1.9646 5.1865 0.68 0.26** 0.44** 1 0.005** - 

Combine 16.03 0-74 12.1 75.5% 1.2374 1.3768 0.66 0.88** 0.79** 0.59** 0.014** 0.015** 

Note: Env: Environments; SD: Standard Deviation; CV: Coefficient of Variation; Correlation below the diagonal is phenotypic 

correlation coefficient; Correlation above the diagonal is genotypic correlation coefficient; **: Significance at p=0.01; σ
2

G: genetic 

variance; σ
2

GE: genotype–environment interactions variance.



Table 2 Phenotypic (below the diagonal) and genetic (above the diagonal) correlation coefficient 

between Fusarium ear rot resistance and agronomic traits. 

Variable 
Ear Rot 

(PIA) 

Days to 

Anthesis

(DTA) 

Days 

to 

Silkin

g 

(DTS) 

Plant 

Height 

Ear 

Height 

Stem 

Lodging 

Bad Husk 

Cover 

Ear Rot 

(PIA) 
1 -0.07* 

-

0.10** 
-0.13* -0.11* 0.38** -0.03 

Anthesis  -0.06 1 0.97** 0.25** 0.28** -0.20** -0.36** 

Silking  -0.08* 0.92** 1 0.28** 0.29** -0.29** -0.34** 

Plant Height -0.11** 0.24** 0.25** 1 0.83** 0.13** -0.23** 

Ear Height -0.10** 0.24** 0.23** 0.82** 1 0.07* -0.22** 

Stem 

Lodging 
0.01 -0.01 -0.007 0.01 0.02 1 0.43** 

Bad Husk 

Cover 
0.00 -0.29** 

-

0.29** 
-0.21** -0.19** 0.02 1 

*: Indicates significance at p=0.05; **: Indicates significance at p=0.01



 
 

Table 3 SNP and candidate genes significantly associated with Fusarium ear rot resistance and detected through single marker GWAS.  1 

#
a
 SNP Bin Position

b
 MAF

c
 p-value R

2
 Candidate genes 

SNP 

located
d
 

Annotation 

S1 
PUT-163a-16926058-

1127 
1.00 2786055 0.39 9.16E-04 0.014 GRMZM2G041881 3 UTR 

Nascent polypeptide-

associated complex 

S2 PZE-101018023 1.01 10506267 0.20 9.64E-04 0.014 GRMZM2G028469 promoter - 

S3 SYN19964 1.11 285314047 0.27 5.97E-04 0.015 GRMZM2G110295 3 UTR Antifreeze protein 

S4 SYN3011 1.11 286228712 0.14 6.25E-04 0.015 GRMZM2G178341 3 UTR Ribosomal protein S13 

S5 PZE-102018300 2.02 8733661 0.44 2.54E-04 0.018 GRMZM2G443445 Exon GroES-like 

S6 PZE-102073397 2.04 53583850 0.13 5.29E-04 0.017 GRMZM2G069093 promoter Plant peroxidase 

S7 PZE-103018799 3.03 10791638 0.26 1.99E-04 0.019 GRMZM2G024551 3 UTR - 

S8 PZE-103079779 3.05 128563291 0.13 8.10E-04 0.015 GRMZM2G175968 promoter - 

S9 SYN24165 3.06 187947934 0.26 6.02E-04 0.015 GRMZM2G085392 Exon Dense granule Gra7 protein 

S10 PZE-103149185 3.07 201056001 0.29 2.17E-04 0.017 AC207628.4 intron 
IQ calmodulin-binding 

region 

S11 PZE-104001384 4.01 1497071 0.22 2.61E-04 0.018 GRMZM2G156346 promoter 
Flagellar motor switch 

protein 

S12 PZE-104025032 4.04 29025217 0.39 5.31E-04 0.016 Intergenic - - 

S13 SYN6472 4.08 183999530 0.41 9.27E-04 0.014 GRMZM2G115499 Exon - 

S14 PZE-104130779 4.09 217656184 0.33 3.27E-04 0.017 GRMZM2G702806 Exon 

2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase 

superfamily protein 

S15 PZE-104130780 4.09 217656207 0.33 3.76E-04 0.016 GRMZM2G702806 Exon 

2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase 

superfamily protein 

S16 PZE-104130783 4.09 217656309 0.33 1.97E-04 0.018 GRMZM2G702806 Exon 

2-oxoglutarate (2OG) and 

Fe(II)-dependent oxygenase 

superfamily protein 

S17 PZE-105024161 5.02 11879005 0.21 7.66E-04 0.014 Intergenic - - 

S18 PZE-105029276 5.02 15202871 0.45 5.64E-05 0.021 Intergenic - - 

S19 PZE-105029277 5.02 15202993 0.44 1.57E-04 0.018 Intergenic - - 



 
 

S20 SYN32921 5.03 72324287 0.09 1.52E-04 0.021 GRMZM2G029879 intron Cyclin-related 

S21 PZE-105116484 5.04 172983404 0.17 5.06E-05 0.021 GRMZM2G128146 promoter 
Glucose/ribitol 

dehydrogenase 

S22 PZE-105116502 5.04 172990198 0.16 1.32E-04 0.018 GRMZM2G128228 Exon - 

S23 PZE-106068510 6.05 121834796 0.31 2.69E-04 0.017 GRMZM2G341027 Exon - 

S24 SYN12691 6.07 164074687 0.37 8.67E-04 0.014 Intergenic - - 

S25 PZE-108104835 8.06 158591683 0.41 7.58E-04 0.014 GRMZM2G002135 5 UTR 

Phospholipid/glycerol 

acyltransferase family 

protein 

S26 PZE-109011484 9.01 11972127 0.14 9.39E-04 0.014 GRMZM2G467169 3 UTR - 

S27 PZE-109031748 9.03 37162489 0.23 5.06E-04 0.015 GRMZM2G034318 promoter - 

S28 PZE-109031963 9.03 37423712 0.17 6.24E-05 0.020 Intergenic - - 

S29 PZE-109050938 9.03 85677755 0.24 3.63E-04 0.016 GRMZM2G095206 Exon 
Glucose/ribitol 

dehydrogenase 

S30 PZE-109050944 9.03 85678508 0.24 4.77E-04 0.016 GRMZM2G095206 5 UTR 
Glucose/ribitol 

dehydrogenase 

S31 SYN6661 9.08 150241000 0.14 7.86E-04 0.014 GRMZM2G148057 intron 
Kinase interacting (KIP1-

like) family protein 

S32 PZE-110012997 10.02 11675413 0.29 2.50E-04 0.017 GRMZM2G413943 Exon - 

S33 PZE-110022153 10.03 30829449 0.10 8.33E-05 0.019 GRMZM2G010669 5 UTR 
Transcription factor, MADS-

box 

S34 PZE-110022154 10.03 30829471 0.10 5.00E-05 0.021 GRMZM2G010669 5 UTR 
Transcription factor, MADS-

box 

S35 PZE-110022412 10.03 31526825 0.14 6.75E-04 0.014 GRMZM2G560307 promoter - 

S36 PZE-110022609 10.03 32154695 0.14 2.11E-04 0.017 GRMZM2G544512 promoter - 

S37 PZE-110022613 10.03 32155942 0.14 5.81E-04 0.015 Intergenic - - 

S38 PZE-110022625 10.03 32159272 0.14 9.98E-04 0.013 Intergenic - - 

S39 PZE-110022694 10.03 32402406 0.13 1.36E-04 0.018 Intergenic - - 

S40 PZE-110022708 10.03 32475067 0.14 2.00E-04 0.017 Intergenic - - 

S41 PZE-110022724 10.03 32493898 0.14 2.74E-04 0.017 GRMZM2G027431 5 UTR 
Putative endonuclease or 

glycosyl hydrolase 

S42 PZE-110022808 10.03 32797753 0.15 4.13E-04 0.016 Intergenic - - 



 
 

S43 PZE-110022827 10.03 32979981 0.14 1.59E-04 0.018 GRMZM2G109783 promoter Protein kinase C 

S44 PZE-110022852 10.03 33120424 0.13 9.15E-05 0.019 Intergenic - - 

S45 PZE-110022891 10.03 33194481 0.14 6.54E-04 0.015 Intergenic - - 

Note: 
a
: the name used in the software BioMereator V3.0. 

b
: The physical position based on B73 reference genome v1 (B73 2 

RefGen_V1). 3 

 4 

  5 



 
 

Table 4 Haplotypes and respective candidate genes that were significantly associated with Fusarium ear rot resistance detected 6 

through haplotype based GWAS. 7 

#
a
 Haplotype Bin 

First 

marker 

position
b
 

End 

marker 

position
b
 

SNPs 

number 

Alleles 

number 
p-value R

2
 Candidate genes Annotation 

H1 1459 2.05 88710768 88847068 4 5 8.94E-04 0.027 AC204390.3 - 

H2 1460 2.05 89154656 89280724 8 6 7.50E-04 0.032 GRMZM2G091313 - 

H3 1467 2.05 91759712 91845565 5 5 9.00E-05 0.031 GRMZM2G562083 - 

H4 3606 5.02 15202871 15202993 2 4 5.04E-04 0.023 GRMZM2G100412 Oxidation reduction 

H5 3693 5.03 36846799 37030576 11 6 3.96E-04 0.031 GRMZM2G350853 - 

H6 4168 5.04 172983404 173032965 4 7 4.96E-04 0.031 GRMZM2G128146 
Glucose/ribitol 

dehydrogenase 

H7 5049 7.02 45334864 45530990 4 3 1.09E-05 0.031 GRMZM2G058128 - 

H8 5053 7.02 46245964 46406735 8 9 7.02E-04 0.041 GRMZM2G095557 - 

H9 5075 7.02 53371838 53372042 2 3 5.16E-04 0.020 GRMZM2G023184 DNA topological change 

H10 5076 7.02 53609623 53610328 2 3 4.45E-07 0.039 GRMZM2G513532 - 

H11 5080 7.02 55590091 55778923 4 6 5.13E-06 0.043 GRMZM2G048257 zinc ion binding 

H12 5083 7.02 56459593 56460086 2 4 8.02E-04 0.022 - - 

H13 5754 8.03 86545938 86546527 2 4 1.09E-04 0.027 GRMZM2G415172 

C5YXL1_SORBI 

Putative uncharacterized 

protein Sb09g019530 

H14 5923 8.05 125354692 125362629 2 4 4.49E-04 0.023 AC197021.3 Zinc finger family protein 

H15 6676 10.03 30829449 30829471 2 2 7.74E-05 0.020 GRMZM2G010669 
Transcription factor, 

MADS-box 

Note: 
a
: the name used in  the software BioMereator V3.0. 

b
: The physical position based on B73 reference genome v1 (B73 8 

RefGen_V1).9 



 
 

Table 5 QTL mapping of Fusarium ear rot resistance in four bi-parental populations. 10 

Population Name Bin Position Left Marker Right Marker LOD PVE (%) Add
a
 Dom

a
 

POP1 Q1 1.04 83 PZA03168_5 PZA01267_3 3.68 5.68 4.55 - 

POP1 Q2 1.07 166 PHM5480_17 PHM14614_22 4.77 5.99 -4.68 - 

POP1 Q3 2.03/04 56 PZA00590_1 PZA02378_7 11.15 15.41 7.57 - 

POP1 Q4 3.06/07 70 PZA03647_1 PHM13673_53 3.62 4.26 3.96 - 

POP1 Q5 5.03 56 PHM12992_5 PHM2524_4 10.24 13.56 7.1 - 

POP2 Q6 1.03/04 2 PZA02490_1 PZA00240_6 8.08 11.36 6.67 -0.53 

POP2 Q7 3.05 54 PZB02179_1 PHM9914_11 4.85 6.11 -4.58 2.15 

POP2 Q8 4.03/04 26 PZA02358_1 PHM3112_9 6.53 9.27 -5.83 0.09 

POP2 Q9 4.06/08 50 PHM5572_19 PHM14618_11 3.19 3.93 -1.03 5.29 

POP2 Q10 9.01/02 8 sh1_12 PHM9374_5 3.47 3.94 3.74 1.12 

POP2 Q11 10.03 36 PHM4066_11 PZA03607_1 5.28 7.82 5.45 0.06 

POP3 Q12 5.03 32599447 PHM4647_8 - 3.06 4.96 0.09 -0.02 

POP3 Q13 5.04 164230168 PZA00148_3 - 4.19 6.73 0.11 -0.01 

POP3 Q13 5.04 166468431 PZA02981_2 - 4.1 6.59 0.11 -0.01 

POP3 Q13 5.05 179060561 PHM1899_157 - 3.08 4.99 0.09 0.02 

POP3 Q13 5.05 179953106 PZA02633_4 - 2.81 4.56 0.09 0.03 

POP3 Q13 5.05 180603220 PZA02356_7 - 2.81 4.56 0.09 0.03 

POP4 Q14 2.04 40967991 PHM10404_8 - 7.95 12.56 3.9 -0.55 

POP4 Q15 2.06 166659759 PZA03692_1 - 10.2 15.8 4.12 -1.11 

POP4 Q15 2.07 176000581 PZA00224_4 - 10.22 15.84 4.04 -0.59 

POP4 Q15 2.07 194696039 PHM793_25 - 9.42 14.69 4 -0.74 

Note: Name: Indicate the QTL name used in the software BioMereator V3.0. Position: For POP1 and POP2 indicates the genetic 11 

position on the linkage map; for POP2 and POP3 indicated the physical position of the marker on B73 reference genome 12 

(B73Ref_V1). LOD: logarithm of odds ratio. PVE: phenotypic variance explained. Add: Additive effect. Dom: Dominance effect. 13 
a
:The positive value means the favorite allele come from resistant parent and negative value means the favorite allele come from 14 

susceptible parent. 15 
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 17 

Figure 1 The number of SNP markers per chromosome (a), SNP marker missing value (b), minor allele frequency (c) and marker 18 

heterozyosity (c) among 854 maize inbred lines that were genotyped.  19 



 
 

 20 



 
 

Figure 2 Estimation of number of sub-populations (K) in 818 maize inbred lines used for GWAS analysis using unlinked 2000 21 

random SNP markers. a) Population structure of maize inbred line panel form K=2 to K=6. The genotype of each line on the figure is 22 

represented by a colored line where each color reflects the membership of a cultivar in one of the K clusters. b) Estimation of number 23 

of sub-populations (K) in maize inbred line panel using deltaK values.  24 
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 26 
 27 

Figure 3 Manhattan plot of genome-wide association analysis (GWAS) for fusarium eat rot resistance (FER) with mixed linear model 28 

and combined phenotypic data from three environments;  a: single marker GWAS; b: Haplotype based GWAS. The vertical axis 29 

indicates –log10 of p-value scores, and the horizontal axis indicates chromosomes and physical positions of SNPs. 30 
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Figure 4 Visualization of all loci associated with Fusarium ear rot resistance that were detected in this study using the software 32 

BioMereator V3.0. The black points presence location of the eight loci detected by both GWAS and linkage mapping. The numbers on 33 

right of the chromosome indicate the physical position of the chromosome with Mb (Million base pair) as unit. 34 
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 39 

Figure 5. Linkage disequilibrium (LD) decay distance on each of the 10 maize chromosomes for the GWAS panel used 40 


