262 research outputs found

    Location of Violent Crime Relative to Trauma Resources in Detroit: Implications for Community Interventions

    Get PDF
    Introduction: Detroit, Michigan, is among the leading United States cities for per-capita homicide and violent crime. Hospital- and community-based intervention programs could decrease the rate of violent-crime related injury but require a detailed understanding of the locations of violence in the community to be most effective.Methods: We performed a retrospective geospatial analysis of all violent crimes reported within the city of Detroit from 2009-2015 comparing locations of crimes to locations of major hospitals. We calculated distances between violent crimes and trauma centers, and applied summary spatial statistics.Results: Approximately 1.1 million crimes occurred in Detroit during the study period, including approximately 200,000 violent crimes. The distance between the majority of violent crimes and hospitals was less than five kilometers (3.1 miles). Among violent crimes, the closest hospital was an outlying Level II trauma center 60% of the time.Conclusion: Violent crimes in Detroit occur throughout the city, often closest to a Level II trauma center. Understanding geospatial components of violence relative to trauma center resources is important for effective implementation of hospital- and community-based interventions and targeted allocation of resources.

    Probabilistic model for microgrids optimal energy management considering AC network constraints

    Get PDF
    A new probabilistic approach for microgrids (MGs) optimal energy management considering ac network constraints is proposed in this paper. The economic model of an energy storage system (ESS) is considered in the problem. The reduced unscented transformation (RUT) is applied in order to deal with the uncertainties related to the forecasted values of load demand, market price, and available outputs of renewable energy sources (RESs). Moreover, the correlation between market price and load demand is taken into account. Besides, the impact of the correlated wind turbines (WT) on MGs’ energy management is studied. An enhanced JAYA (EJAYA) algorithm is suggested to achieve the best solution of the considered problem. The effective performance of the presented approach is verified by applying the suggested strategy on a modified IEEE 33-bus system. It can be observed that for dealing with probabilistic problems, the suggested RUT-EJAYA shows accurate results such as those of Monte Carlo (MC) while the computational burden (time and complexity) is lower.fi=vertaisarvioitu|en=peerReviewed

    External evaluation of treated historical wooden samples

    Get PDF
    This study aims to identify suitable adhesives for the conservation and restoration of hlstorical Zelkova Carpinifolia wood located in wet conditions. The Superficial properties and hardness of 14 compounds treated with several consolidants were compared. The consolidants have been applied alone, with synthetic resin or with protein glues and natural resins by the brushing method. Colorimetric measurements, observation methods and hardness tests were conducted before and after aging to verify the possible changes of the treated wood and the consolidating resistance. The compound 1:2 of Butvar B98 and sandarac in 5% ethanol was found to be more effective, providing a suitable compound compared to the other consolidants teste

    Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing

    Get PDF
    Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2–60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications

    Food composition database development for between country comparisons

    Get PDF
    Nutritional assessment by diet analysis is a two-stepped process consisting of evaluation of food consumption, and conversion of food into nutrient intake by using a food composition database, which lists the mean nutritional values for a given food portion. Most reports in the literature focus on minimizing errors in estimation of food consumption but the selection of a specific food composition table used in nutrient estimation is also a source of errors. We are conducting a large prospective study internationally and need to compare diet, assessed by food frequency questionnaires, in a comparable manner between different countries. We have prepared a multi-country food composition database for nutrient estimation in all the countries participating in our study. The nutrient database is primarily based on the USDA food composition database, modified appropriately with reference to local food composition tables, and supplemented with recipes of locally eaten mixed dishes. By doing so we have ensured that the units of measurement, method of selection of foods for testing, and assays used for nutrient estimation are consistent and as current as possible, and yet have taken into account some local variations. Using this common metric for nutrient assessment will reduce differential errors in nutrient estimation and improve the validity of between-country comparisons

    Recent trends in three-dimensional bioinks based on alginate for biomedical applications

    Get PDF
    Three-dimensional (3D) bioprinting is an appealing and revolutionary manufacturing approach for the accurate placement of biologics, such as living cells and extracellular matrix (ECM) components, in the form of a 3D hierarchical structure to fabricate synthetic multicellular tissues. Many synthetic and natural polymers are applied as cell printing bioinks. One of them, alginate (Alg), is an inexpensive biomaterial that is among the most examined hydrogel materials intended for vascular, cartilage, and bone tissue printing. It has also been studied pertaining to the liver, kidney, and skin, due to its excellent cell response and flexible gelation preparation through divalent ions including calcium. Nevertheless, Alg hydrogels possess certain negative aspects, including weak mechanical characteristics, poor printability, poor structural stability, and poor cell attachment, which may restrict its usage along with the 3D printing approach to prepare artificial tissue. In this review paper, we prepare the accessible materials to be able to encourage and boost new Alg-based bioink formulations with superior characteristics for upcoming purposes in drug delivery systems. Moreover, the major outcomes are discussed, and the outstanding concerns regarding this area and the scope for upcoming examination are outlined

    Novel methodology for predicting the critical salt concentration of bubble coalescence inhibition

    Get PDF
    Bubble coalescence in some salt solutions can be inhibited if the salt concentration reaches a critical concentration Ccr. There are three models available for Ccr in the literature, but they fail to predict Ccr correctly. The first two models employ the van der Waals attraction power laws to establish Ccr from the discriminant of quadratic or cubic polynomials. To improve the two models, the third model uses the same momentum balance equation of the previous models but different intermolecular force generated by water hydration with exponential decaying. The third prediction for Ccr requires the experimental input for film rupture thickness and is incomplete. We show further in this paper that the third model is incorrect. We propose a novel methodology for determining C cr which resolves the mathematical uncertainties in modeling C cr and can explicitly predict it from any relevant intermolecular forces. The methodology is based on the discovery that Ccr occurs at the local maximum of the balance equation for the capillary pressure, disjoining pressure, and pressure of the Gibbs-Marangoni stress. The novel generic approach is successfully validated using nonlinear equations for complicated disjoining pressure
    corecore