366 research outputs found

    Beyond the Implicit/Explicit Dichotomy: The Pragmatics of Plausible Deniability

    Get PDF
    In everyday conversation, messages are often communicated indirectly, implicitly. Why do we seem to communicate so inefficiently? How speakers choose to express a message (modulating confidence, using less explicit formulations) has been proposed to impact how committed they will appear to be to its content. This commitment can be assessed in terms of accountability – is the speaker held accountable for what they communicated? – and deniability – can the speaker plausibly deny they intended to communicate it? We investigated two factors that may influence commitment to implicitly conveyed messages. In a preregistered online study, we tested the hypothesis that the degree of meaning strength (strongly or weakly communicated) and the level of meaning used by the speaker (an enrichment or a conversational implicature) modulate accountability and plausible deniability. Our results show that both meaning strength and level of meaning influence speaker accountability and plausible deniability. Participants perceived enrichments to be harder to deny than conversational implicatures, and strongly implied content as more difficult to deny than weakly implied content. Furthermore, participants held the speaker more accountable to content conveyed via an enrichment than to content conveyed via an implicature. These results corroborate previously found differences between levels of meaning (enrichment vs. implicature). They also highlight the largely understudied role of meaning strength as a cue to speaker commitment in communication

    Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface

    Full text link
    Standing wave patterns that arise on the surface of ferrofluids by (single frequency) parametric forcing with an ac magnetic field are investigated experimentally. Depending on the frequency and amplitude of the forcing, the system exhibits various patterns including a superlattice and subharmonic rhombuses as well as conventional harmonic hexagons and subharmonic squares. The superlattice arises in a bicritical situation where harmonic and subharmonic modes collide. The rhombic pattern arises due to the non-monotonic dispersion relation of a ferrofluid

    Logics of Finite Hankel Rank

    Full text link
    We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th birthday. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23534-9_1

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    The clinical relevance of distortion correction in presurgical fMRI at 7 T

    Get PDF
    Presurgical planning with fMRI benefits from increased reliability and the possibility to reduce measurement time introduced by using ultra-high field. Echo-planar imaging suffers, however, from geometric distortions which scale with field strength and potentially give rise to clinically significant displacement of functional activation. We evaluate the effectiveness of a dynamic distortion correction (DDC) method based on unmodified single-echo EPI in the context of simulated presurgical planning fMRI at 7 T and compare it with static distortion correction (SDC). The extent of distortion in EPI and activation shifts are investigated in a group of eleven patients with a range of neuropathologies who performed a motor task. The consequences of neglecting to correct images for susceptibility-induced distortions are assessed in a clinical context. It was possible to generate time series of EPI-based field maps which were free of artifacts in the eloquent brain areas relevant to presurgical fMRI, despite the presence of signal dropouts caused by pathologies and post-operative sites. Distortions of up to 5.1 mm were observed in the primary motor cortex in raw EPI. These were accurately corrected with DDC and slightly less accurately with SDC. The dynamic nature of distortions in UHF clinical fMRI was demonstrated via investigation of temporal variation in voxel shift maps, confirming the potential inadequacy of SDC based on a single reference field map, particularly in the vicinity of pathologies or in the presence of motion. In two patients, the distortion correction was potentially clinically significant in that it might have affected the localization or interpretation of activation and could thereby have influenced the treatment plan. Distortion correction is shown to be effective and clinically relevant in presurgical planning at 7 T

    Social Interactions vs Revisions, What is important for Promotion in Wikipedia?

    Full text link
    In epistemic community, people are said to be selected on their knowledge contribution to the project (articles, codes, etc.) However, the socialization process is an important factor for inclusion, sustainability as a contributor, and promotion. Finally, what does matter to be promoted? being a good contributor? being a good animator? knowing the boss? We explore this question looking at the process of election for administrator in the English Wikipedia community. We modeled the candidates according to their revisions and/or social attributes. These attributes are used to construct a predictive model of promotion success, based on the candidates's past behavior, computed thanks to a random forest algorithm. Our model combining knowledge contribution variables and social networking variables successfully explain 78% of the results which is better than the former models. It also helps to refine the criterion for election. If the number of knowledge contributions is the most important element, social interactions come close second to explain the election. But being connected with the future peers (the admins) can make the difference between success and failure, making this epistemic community a very social community too

    Prolonged Application of High Fluid Shear to Chondrocytes Recapitulates Gene Expression Profiles Associated with Osteoarthritis

    Get PDF
    BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2)) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be β‰₯2-fold up-regulated and ≀0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA

    The Sound of Interconnectivity; The European Vasculitis Society 2022 Report

    Full text link
    The first European Vasculitis Society (EUVAS) meeting report was published in 2017. Herein, we report on developments in the past 5 years which were greatly influenced by the pandemic. The adaptability to engage virtually, at this critical time in society, embodies the importance of networks and underscores the role of global collaborations. We outline state-of-the-art webinar topics, updates on developments in the last 5 years, and proposals for agendas going forward. A host of newly reported clinical trials is shaping practice on steroid minimization, maintenance strategies, and the role of newer therapies. To guide longer -term strategies, a longitudinal 10-year study investigating relapse, comorbidity, malignancy, and survival rates is at an advanced stage. Disease assessment studies are refining classification criteria to differentiate forms of vasculitis more fully. A large international validation study on the histologic classification of anti-neutrophil cytoplasmic antibody (ANCA) glomerulonephritis, recruiting new multicenter sites and comparing results with the Kidney Risk Score, has been conducted. Eosinophilic granulomatosis with polyangiitis (EGPA) genomics offers potential pathogenic subset and therapeutic insights. Among bio-markers, ANCA testing is favoring immunoassay as the preferred method for diagnostic evaluation. Consolidated development of European registries is progressing with an integrated framework to analyze large clinical data sets on an unprecedented scale

    An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans

    Get PDF
    Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets
    • …
    corecore