14 research outputs found

    Allele-specific long-distance regulation dictates IL-32 isoform switching and mediates susceptibility to HIV-1

    Get PDF
    We integrated data obtained from HIV-1 genome-wide association studies with T cell-derived epigenome data and found that the noncoding intergenic variant rs4349147, which is statistically associated with HIV-1 acquisition, is located in a CD4+ T cell-specific deoxyribonuclease I hypersensitive region, suggesting regulatory potential for this variant. Deletion of the rs4349147 element in Jurkat cells strongly reduced expression of interleukin-32 (IL-32), approximately 10-kb upstream, and chromosome conformation capture assays identified a chromatin loop between rs4349147 and the IL-32 promoter validating its function as a long-distance enhancer. We generated single rs4349147-A or rs4349147-G allele clones and demonstrated that IL-32 enhancer activity and interaction with the IL-32 promoter are strongly allele dependent; rs4349147 -/A cells display reduced IL-32 expression and altered chromatin conformation as compared to rs4349147 G/- cells. Moreover, RNA sequencing demonstrated that rs4349147 G/- cells express a lower relative ratio of IL-32α to non-a isoforms than rs4349147 -/A cells and display increased expression of lymphocyte activation factors rendering them more prone to infection with HIV-1. In agreement, in primary CD4+ T cells, both treatment with recombinant IL-32γ (rIL-32γ) but not rIL-32α, and exogenous lentiviral overexpression of IL-32γ or IL-32β but not IL-32α resulted in a proinflammatory T cell cytokine environment concomitant with increased susceptibility to HIV infection. Our data demonstrate that rs4349147-G promotes transcription of non-IL-32α isoforms, generating a proinflammatory e

    NPEPPS Is a Druggable Driver of Platinum Resistance

    Get PDF
    There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations.</p

    NPEPPS Is a Druggable Driver of Platinum Resistance

    Get PDF
    There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations.</p

    Gliotoxin, identified from a screen of fungal metabolites, disrupts 7SK snRNP, releases P-TEFb, and reverses HIV-1 latency

    Get PDF
    A leading pharmacological strategy toward HIV cure requires "shock" or activation of HIV gene expression in latently infected cells with latency reversal agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs, we used fungal secondary metabolites as a source of bioactive molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the positive transcription elongation factor b (P-TEFb) inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex, to be significantly reduced upon GTX treatment of CD4+ T cells. GTX directly disrupted 7SK snRNP by targeting La-related protein 7 (LARP7), releasing active P-TEFb, which phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD), inducing HIV transcription

    HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages

    Get PDF
    B lymphopoiesis is the result of several cell-commitment, lineage-choice, and differentiation processes. Every differentiation step is characterized by the activation of a new, lineage-specific, genetic program and the extinction of the previous one. To date, the central role of specific transcription factors in positively regulating these distinct differentiation processes to acquire a B cell-specific genetic program is well established. However, the existence of specific transcriptional repressors responsible for the silencing of lineage inappropriate genes remains elusive. Here we addressed the molecular mechanism behind repression of non-lymphoid genes in B cells. We report that the histone deacetylase HDAC7 was highly expressed in pre-B cells but dramatically down-regulated during cellular lineage conversion to macrophages. Microarray analysis demonstrated that HDAC7 re-expression interfered with the acquisition of the gene transcriptional program characteristic of macrophages during cell transdifferentiation; the presence of HDAC7 blocked the induction of key genes for macrophage function, such as immune, inflammatory, and defense response, cellular response to infections, positive regulation of cytokines production, and phagocytosis. Moreover, re-introduction of HDAC7 suppressed crucial functions of macrophages, such as the ability to phagocytose bacteria and to respond to endotoxin by expressing major pro-inflammatory cytokines. To gain insight into the molecular mechanisms mediating HDAC7 repression in pre-B cells, we undertook co-immunoprecipitation and chromatin immunoprecipitation experimental approaches. We found that HDAC7 specifically interacted with the transcription factor MEF2C in pre-B cells and was recruited to MEF2 binding sites located at the promoters of genes critical for macrophage function. Thus, in B cells HDAC7 is a transcriptional repressor of undesirable genes. Our findings uncover a novel role for HDAC7 in maintaining the identity of a particular cell type by silencing lineage-inappropriate genes

    Znf202 Affects High Density Lipoprotein Cholesterol Levels and Promotes Hepatosteatosis in Hyperlipidemic Mice

    Get PDF
    Background: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established. Methodology and Principal Findings: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems. Next, effects of adenoviral znf202 overexpression in vivo were determined in normo- as well as hyperlipidemic mouse models. Znf202 overexpression in mouse hepatoma cells mhAT3F2 resulted in downregulation of members of the Apoe/c1/c2 and Apoa1/c3/a4 gene cluster. The repressive activity of Znf202 was firmly confirmed in an apoE reporter assay and Znf202 responsive elements within the ApoE promoter were identified. Adenoviral Znf202 transfer to Ldlr-/- mice resulted in downregulation of apoe, apoc1, apoa1, and apoc3 within 24 h after gene transfer. Interestingly, key genes in bile flux (abcg5/8 and bsep) and in bile acid synthesis (cyp7a1) were also downregulated. At 5 days post-infection, the expression of the aforementioned genes was normalized, but mice had developed severe hepatosteatosis accompanied by hypercholesterolemia and hypoalphalipoproteinemia. A much milder phenotype was observed in wildtype mice after 5 days of hepatic Znf202 overexpression. Interestingly and similar to Ldl-/- mice, HDL-cholesterol levels in wildtype mice were lowered after hepatic Znf202 overexpression. Conclusion/Significance: Znf202 overexpression in vivo reveals an important role of this transcriptional regulator in liver lipid homeostasis, while firmly establishing the proposed key role in the control of HDL levels

    The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter

    No full text
    Tat is a critical viral transactivator essential for human immunodeficiency virus (HIV) gene expression. Activation involves binding to an RNA stem-loop structure and recruitment of the positive transcription elongation factor b. Tat also induces the remodeling of a single nucleosome in the HIV promoter. However, the mechanism of this remodeling has remained unclear. Knockdown of INI-1 and BRG-1, two components of the SWI/SNF chromatin-remodeling complex, suppressed Tat-mediated transactivation. Cells lacking INI-1 (G401 and MON) or BRG-1 (C33A) exhibited defective transactivation by Tat that was restored upon INI-1 and BRG-1 expression, respectively. Tat was co-immunoprecipitated with several SWI/SNF subunits, including INI-1, BRG-1, and β-actin. The SWI/SNF complex interacted with the integrated HIV promoter in a Tat-dependent manner. We also found that INI-1 and BRG-1 synergized with the p300 acetyltransferase to activate the HIV promoter. This synergism depended on the acetyltransferase activity of p300 and on Tat Lys 50 and Lys 51. In conclusion, Tat-mediated activation of the HIV promoter requires the SWI/SNF complex in synergy with the coactivator p300
    corecore