1,340 research outputs found

    A new method to detect long term trends of methane (CH₄) and nitrous oxide (N₂O) total columns measured within the NDACC ground-based high resolution solar FTIR network

    Get PDF
    Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF) and carbon monoxide (CO) and tropopause height are used to reduce the variability in the methane (CH4) and nitrous oxide (N2O) total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60°N, 11°E, 600ma.s.l.) and used on three other European FTIR stations, i.e. Jungfraujoch (47°N, 8°E, 3600ma.s.l.), Zugspitze (47°N, 11°E, 3000ma.s.l.), and Kiruna (68°N, 20°E, 400ma.s.l.). Linear CH4 trends between 0.13±0.01-0.25±0.02%yr−1 were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH4 total columns. This model shows a growth in 1996–1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH4 amount increases between 0.57±0.22–1.15±0.17%yr−1. Linear N2O trends between 0.19±0.01–0.40±0.02%yr−1 were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N2O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N2O trends between the FTIR sites is of stratospheric origin. This agrees well with the N2O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98±0.28%yr−1, and considerably smaller trends at lower latitudes, 0.27±0.25%yr−1. The multiple regression model was compared with two other trend methods, the ordinary linear regression and a Bootstrap algorithm. The multiple regression model estimated CH4 and N2O trends that differed up to 31% compared to the other two methods and had uncertainties that were up to 300% lower. Since the multiple regression method were carefully validated this stresses the importance to account for variability in the total columns when estimating trend from solar FTIR data

    Carbon monoxide (CO) and ethane (C₂H₆) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model

    Get PDF
    Trends in the CO and C2H6 partial columns (~0–15 km) have been estimated from four European groundbasedsolar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to −0.45±0.16%yr−1, −1.00 ± 0.24%yr−1, −0.62±0.19%yr−1 and −0.61±0.16%yr−1, respectively. The corresponding trends for C2H6 are−1.51±0.23%yr−1, −2.11±0.30%yr−1, −1.09±0.25%yr−1 and −1.14±0.18%yr−1. All trends are presented with their 2-σ confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996–2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH4 and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C2H6 partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Ålesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10–22% deviation for CO and 14–31% deviation for C2H6. Their seasonal amplitude is captured within 6–35% and 9–124% for CO and C2H6, respectively. However, 61–98% of the CO and C2H6 partial columns in the European model are shown to arise from the boundary conditions, making the globalscale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1–9% and 37–50% of the measurements for CO and C2H6, respectively. The global model sensitivity for assumptions made in this paper is also analyzed

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors

    Get PDF
    The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders

    Anti-α-glucose-based glycan IgM antibodies predict relapse activity in multiple sclerosis after the first neurological event

    Get PDF
    Background There is no specific serum-based biomarker for the diagnosis or prognosis of relapsing-remitting multiple sclerosis (RRMS). Objective We investigated whether levels of IgM antibodies to Glc(alpha 1,4) Glc(alpha) (GAGA4) or to a panel of four glucose-based glycans could differentiate MS from other neurological diseases (OND) or predict risk of early relapse following first presentation (FP) of RRMS. Methods Retrospective analysis of 440 sera samples of three cohorts: A) FP-RRMS (n = 44), OND (n = 44); B) FP-RRMS (n = 167), OND (n = 85); and C) FP (n = 100). Anti-GAGA4 IgM levels were measured by enzyme immunoassay in cohort-A and cohort-B. Cohort-C IgM antibodies to glucose-based glycan panel were measured by immunofluorescence. Results FP-RRMS had higher levels of anti-GAGA4 IgM than OND patients (cohort-A, P = 0.01; cohort-B, P = 0.0001). Sensitivity and specificity were 27% and 97% for cohort-A; and 26% and 90% for cohort-B, respectively. In cohort-C, 58 patients experienced early relapse (= 24 months), and 11 did not experience second attack during follow-up. Kaplan-Meier curves demonstrated decrease in time to next relapse for patients positive for the antibody panel (P = 0.02, log rank). Conclusions Serum anti-GAGA4 IgM discerns FP-RRMS patients from OND patients. Higher levels of serum anti-alpha-glucose IgM in FP patients predict imminent early relapse. Multiple Sclerosis 2009; 15: 422-430. http://msj.sagepub.co
    corecore