215 research outputs found

    INDONESIAN DECENTRALIZATION: EVALUATION, RECENT MOVEMENT AND FUTURE PERSPECTIVES

    Get PDF
    A legal review dealing with the decentralization aspect in Indonesiia. Some evaluations are made to project the future prospects

    LOCAL OWN REVENUE MOBILIZATION IN INDONESIA

    Get PDF
    Decentralization policy in Indonesia has given an increase of authority to localΒ government in managing their own local finance. One of the characteristics of theΒ decentralization policy is to increase local taxing power, with the objective to optimizeΒ local own revenue in supporting local spending. Given the current data observation, it isΒ obvious that many local governments do not have significant local own revenue to supportΒ their local spending. This paper-adopting tax elasticity method-attempts to evaluate theΒ present local own revenue optimization. Furthermore, by adopting a decomposition of taxΒ elasticity, this paper also attempts to elaborate factors affecting local own revenuecollection.The estimated local own revenue elasticity show that most taxes and user charges,Β which are the main sources of local own revenue, are considered not a buoyant tax. Moreanalysis using a decomposition of tax elasticity shows that tax to base elasticity is weak,Β suggesting that local governments need to improve discreationary tax changes at localΒ level, such as local base changes, collection changes, and enforcement changes. TheΒ analysis also shows that some local tax bases are not responsive to the economic growth,Β which leads to the recommendation to improve local business environment, such asΒ streamlining local regulations and reducing harmfull local taxes and user charges.Keywords: local finance, local government owned revenue, fiscal decentralization, local taxΒ elasticity, local tax base, nuisance local taxes, local economic growt

    A MEMS-based solid propellant microthruster array for space and military applications

    Get PDF
    Since combustion is an easy way to achieve large quantities of energy from a small volume, we developed a MEMS based solid propellant microthruster array for small spacecraft and micro-air-vehicle applications. A thruster is composed of a fuel chamber layer, a top-side igniter with a micromachined nozzle in the same silicon layer. Layers are assembled by adhesive bonding to give final MEMS array. The thrust force is generated by the combustion of propellant stored in a few millimeter cube chamber. The micro-igniter is a polysilicon resistor deposited on a low stress SiO2/SiNx thin membrane to ensure a good heat transfer to the propellant and thus a low electric power consumption. A large range of thrust force is obtained simply by varying chamber and nozzle geometry parameters in one step of Deep Reactive Ion Etching (DRIE). Experimental tests of ignition and combustion employing home made (DB+x% BP) propellant composed of a Double-Base and Black-Powder. A temperature of 250 therefore degrees C, enough to propellant initiation, is reached for 40 mW of electric power. A combustion rate of about 3.4 mm/s is measured for DB+20% BP propellant and thrust ranges between 0.1 and 3,5 mN are obtained for BP ratio between 10% and 30% using a microthruster of 100 mu m of throat wide

    Evaluation of the physico-chemical and metallic pollution of groundwater around the Landfill and recovery Center of Oum Azza (Rabat Region - Morocco).

    Get PDF
    To reduce the impact of solid waste on the natural environment, in particular its effects on water resources, Morocco has made great efforts to manage them. Indeed, in the framework of the National program for household waste, about twenty controlled landfills or landfill and recovery center (CEV) have been built to mitigate the pollution and nuisance of existing wild dumps. However, these controlled landfills remain an alternative whose environmental impacts are difficult to control. Thus, the present work aims to evaluate possible impacts of the solid waste landfill and recovery center (CEV) of Oum Azza (Rabat, Morocco) on the quality of the surrounding groundwater. The hydro-chemical quality of these waters intended for the supply of the rural populations of this region was studied through the spatio-temporal monitoring of a certain number of physicochemical and metallic parameters. Thirty-six samples were collected, analyzed and evaluated from nine wells in the four seasons of 2015. The results of this study show that the groundwater of certain wells near the CEV d'Oum Azza are highly mineralized and contaminated. This diversified contamination is probably due to anthropogenic effects including organic, nitric and / or metallic

    Pelatihan Pemanfaatan Gulma Eceng Gondok sebagai Pupuk Alternatif

    Full text link
    Eceng Gondok sebagai masalah bagi jaringan drainase, di Kota Makassar, juga dirasakan oleh berbagai negara di dunia. Di Amerika tanaman eceng gondok dengan nama latin Eichornia crassipes, sejak 1960 oleh pemerintah telah berdiri Water Hyacinth Society yang merupakan asosiasi para ilmuwan, praktisi dan pengusaha untuk mengontrol atau menanggulangi masalah penyebaran eceng gondok. Asosiasi ini kemudian berganti nama menjadi Aquatic Plant management Society (APMS) yang meliputi pengkajian aspek-aspek biologis, ekologis dan pengontrolan pertumbuhan tumbuh-tumbuhan air pada umumnya dan tidak hanya terbatas pada eceng godok. Penelitian mengenai aspek-aspek ekologi eceng gondok di Indonesia sampai saat ini masih belum banyak dilakukan orang, padahal sebagai tanaman yang mengepung di permukaan air ini, memiliki nilai penting yang tinggi, terutama untuk pipik alternatif. Penyebarannya yang cukup luas, penyesuaiannya yang baik terhadap lingkungan, gangguan dan kerugian yang sangat berarti yang dapat ditimbulkannya, cara pengendaliannya yang sulit dan cara pemanfaatannya yang belum diketahui dengan baik sebenarnya merupakan alasan-alasan yang menarik untuk memanfaatkan tanaman ini secara menyeluruh. Salah satunya dengan melatih masyarakat, menjadikannya sebagai pupuk alternatif

    Chemical Composition and Antioxidant Activity of seeds oils and fruit juice of Opuntia Ficus Indica and Opuntia Dillenii from Morocco

    Full text link
    peer reviewedThis study provides basic information on the mineral composition of the seeds and antioxidant activity in seeds oils and fruit juices of cactus belonging to two species Opuntia ficus indica and Opuntia dillenii, from Morocco (Oujda), in order to evaluate the nutritional value of the Opuntia extracts. Minerals determined from dry seeds of Opuntia ficus indica and Opuntia dillenii were: calcium 480.93 and 408.28; phosphorus 1417.59 and 970.15; potassium 304.51 and 201.96; magnesium: 316.59 and 240.30; sodium: 48.33 and 18.18; zinc: 70.77 and 78.26 mg/100g respectively. The main fatty acids of Opuntia ficus indica and Opuntia dillenii seed oil were respectively: linoleic acid: 58.79 and 79.83%, Palmitic acid: 11.18 and 13.52%. The antioxidant activity of Opuntia ficus indica and Opuntia dillenii seed oils and fruit juices were assessed by means of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and ascorbic acid test. The results showed that the antioxidant activities of Opuntia ficus indica and Opuntia dillenii seed oil (IC50 = 19.79 Β± 0.023 and 27.21 Β± 0.075 ΞΌL/mL) are higher than that of the reference ascorbic acid (IC50 = 16.56 Β± 0.019 ΞΌg/mL). However, the Opuntia dillenii juice presents antioxidant activity more important than this of Opuntia seed oil and ascorbic acid. It possessed strong antioxidant activity (IC50 = 8.18 ΞΌL/mL). The antioxidant activity of the seed oil and juice were also found to be concentration-dependent

    Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach

    Get PDF
    Within an experimental approach we describe the mechanical behavior of different resin-epoxy laminates reinforced with cross-ply Kevlar and glass fibers under the conditions of static and cyclic three-point bending. In static tests, we consider the effect of stacking sequence, the thickness of 90Β°-oriented layers, reinforcement type on the mechanical behavior of laminates under loading and on realization of various damage modes leading to rupture. Cyclic loading studies have been performed in two steps. In the first stage, we inquire into the dependence of the behavior and durability of four glass fiber- reinforced laminate-types on the stacking sequence; the second stage is devoted to studying the dependence of cyclic strength and fatigue behavior of laminates on the reinforcement type. Fatigue tests are carried out in load-control regime for glass and hybrid (Kevlar + glass) fiber laminates. Fatigue curves are constructed in coordinates β€œstress - number of cycles until fracture” from the criteria corresponding to a drop in stiffness by 5 and 10%. Analysis of the results obtained permits evaluation of the effect of the stacking sequence and the reinforcement type on the behavior of cross-ply laminates in cyclic loading. The presence of Kevlar fibers accounts for nonlinear behavior of laminates in static tests and for low cyclic strength in fatigue tests under three-point bending.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° описано мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² с ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ ΠΈΠ· эпоксидной смолы, пСрСкрСстно-Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²Ρ‹ΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ ΠΈ стСкловолокнами, Π² условиях статичСского ΠΈ цикличСского Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΈΠ±Π°. ΠŸΡ€ΠΈ статичСских испытаниях Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ слоСв, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β° ΠΈ влияниС Ρ‚ΠΈΠΏΠ° армирования Π½Π° мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² Π² процСссС нагруТСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² поврСТдСния, приводящих ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ. ИсслСдования ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ состоят ΠΈΠ· Π΄Π²ΡƒΡ… этапов. На ΠΏΠ΅Ρ€Π²ΠΎΠΌ этапС изучаСтся влияниС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ² Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ², Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… стСкловолокнами, Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ этапС - влияниС Ρ‚ΠΈΠΏΠ° армирования Π½Π° Ρ†ΠΈΠΊΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ сопротивлСниС Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ. УсталостныС испытания Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π² мягком Ρ€Π΅ΠΆΠΈΠΌΠ΅ нагруТСния для Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ², Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… стСкловолокнами ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ (ΠΊΠ΅Π²Π»Π°Ρ€+стСкло). ΠšΡ€ΠΈΠ²Ρ‹Π΅ усталости Π±Ρ‹Π»ΠΈ построСны Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… напряТСниС - число Ρ†ΠΈΠΊΠ»ΠΎΠ² Π΄ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π½Π° основС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² сниТСния ТСсткости Π½Π° 5 ΠΈ 10%. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Ρ‚ΠΈΠΏΠ° армирования Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ пСрСкрСстно-Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ. НаличиС ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π² Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π°Ρ… обСспСчиваСт ΠΈΡ… Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ статичСских испытаниях ΠΈ Π½ΠΈΠ·ΠΊΡƒΡŽ Ρ†ΠΈΠΊΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ усталостных испытаниях Π² условиях Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΈΠ±Π°.Π£ Ρ€Π°ΠΌΠΊΠ°Ρ… Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ описано ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ€Ρ–Π·Π½ΠΈΡ… Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² Ρ–Π· ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΡŽ Π· Споксидної смоли, Ρ‰ΠΎ пСрСхрСсноармовані ΠΊΠ΅Π²Π»Π°Ρ€ΠΎ- Π²ΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ Ρ– скловолокнами, Π² ΡƒΠΌΠΎΠ²Π°Ρ… статичного Ρ– Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈ- Ρ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π·Π³ΠΈΠ½Ρƒ. ΠŸΡ€ΠΈ статичних випробуваннях Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ ΠΏΠΎΡΠ»Ρ–Π΄ΠΎΠ²Π½Ρ–ΡΡ‚ΡŒ укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΈ ΠΎΡ€Ρ–Ρ”Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΡ–Π΄ ΠΊΡƒΡ‚ΠΎΠΌ 90Β° ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΏΠ»ΠΈΠ² Ρ‚ΠΈΠΏΡƒ армування Π½Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² Ρƒ процСсі навантаТСння, Π° Ρ‚Π°ΠΊΠΎΠΆ Π½Π° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² пошкодТСння, Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ руйнування. ДослідТСння ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ– ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Π· Π΄Π²ΠΎΡ… Π΅Ρ‚Π°ΠΏΡ–Π². На ΠΏΠ΅Ρ€ΡˆΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ Π²ΠΏΠ»ΠΈΠ² послідовності укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ– Π΄ΠΎΠ²Π³ΠΎΠ²Ρ–Ρ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‡ΠΎΡ‚ΠΈΡ€ΡŒΠΎΡ… Ρ‚ΠΈΠΏΡ–Π² Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΈΡ… скловолокнами Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π², Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– - Π²ΠΏΠ»ΠΈΠ² Ρ‚ΠΈΠΏΡƒ армування Π½Π° Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½Ρƒ ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ Ρ– ΠΎΠΏΡ–Ρ€ Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ–. Випробування Π½Π° Π²Ρ‚ΠΎΠΌΡƒ Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Ρƒ ΠΌ ’якому Ρ€Π΅ΠΆΠΈΠΌΡ– навантаТСння для Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΈΡ… скловолокнами Ρ– Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ (ΠΊΠ΅Π²Π»Π°Ρ€ + скло) Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π². На основі ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–Ρ—Π² зниТСння Торсткості Π½Π° 5 Ρ– 10% Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… напруТСння - число Ρ†ΠΈΠΊΠ»Ρ–Π² Π΄ΠΎ руйнування ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€ΠΈΠ²Ρ– ΡƒΡ‚ΠΎΠΌΠΈ. Аналіз ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² дозволяє ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² послідовності укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Ρ‚ΠΈΠΏΡƒ армування Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ пСрСхрСсноармованих Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ–. ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²ΠΈΡ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Ρƒ Π»Π°ΠΌΡ–Π½Π°Ρ‚Π°Ρ… Π·Π°ΠΏΠ΅Π·Ρ‡ΡƒΡ” Ρ—Ρ… Π½Π΅Π»Ρ–Π½Ρ–ΠΉΠ½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ ΠΏΡ€ΠΈ статичних випробуваннях Ρ– Π½ΠΈΠ·ΡŒΠΊΡƒ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½Ρƒ ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΈ випробуваннях Π½Π° Π²Ρ‚ΠΎΠΌΡƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Ρ‚Ρ€ΠΈΡ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π·Π³ΠΈΠ½Ρƒ

    Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies

    Get PDF
    The analysis of stiffness and the identification of rupture mechanisms during and after static tests of sandwich panels and their components have been investigated. The sandwich panels, having cross-ply laminates skins made of glass fibre and epoxy resin were manufactured by vacuum moulding and subjected to three-point bending tests. Two PVC cores of similar type but with differing densities were investigated. The effect of core density and its thickness on the behavior and the damage was highlighted. In terms of stiffness and load at failure, the sandwich structure has better mechanical characteristics compared to its components.Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ дослідТСно Π·ΠΌΡ–Π½Ρƒ Торсткості Ρ‚Π° ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ руйнування ΠΏΡ€ΠΈ статичних випробуваннях Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ… пластин Ρ– Ρ—Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π². Π‘Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²Ρ– ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ– пластини Π· пСрСхрСсними ΡˆΠ°Ρ€Π°ΠΌΠΈ Π·Ρ– скловолокна Ρ‚Π° Споксидної смоли, Ρ‰ΠΎ Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΡ— Π²Ρ–Π΄Π»ΠΈΠ²ΠΊΠΈ, ΠΏΡ–Π΄Π΄Π°Π²Π°Π»ΠΈ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½ΡŽ Ρ‚Ρ€ΠΈΡ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΈΠΌ Π·Π³ΠΈΠ½ΠΎΠΌ. ДослідТували Π΄Π²Π° Π²Π°Ρ€Ρ–Π°Π½Ρ‚ΠΈ пластин Π· ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½ΠΈΠΌΠΈ Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π°ΠΌΠΈ Π· ΠΏΠΎΠ»Ρ–- вінілопласта Ρ€Ρ–Π·Π½ΠΎΡ— Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ–. Розглянуто Π²ΠΏΠ»ΠΈΠ² Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– Ρ– Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΈ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ‚Π° пошкодТСння ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. Показано, Ρ‰ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ Ρ–Π· Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π΅ΠΌ Π²Π΅Π»ΠΈΠΊΠΎΡ— Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– ΠΌΠ°Ρ” Π±Ρ–Π»ΡŒΡˆ високі характСристики статичної міцності Ρ– стійкості порівняно Π· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠΌ Ρ–Π· Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π΅ΠΌ ΠΌΠ΅Π½ΡˆΠΎΡ— Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ–.Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдовано ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ТСсткости ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ статичСских испытаниях многослойных ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… пластин ΠΈ ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². ΠœΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Π΅ пластины с пСрСкрСстными слоями ΠΈΠ· стСкловолокна ΠΈ эпоксидной смолы, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠΉ ΠΎΡ‚Π»ΠΈΠ²ΠΊΠΈ, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°Π»ΠΈ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΡŽ Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ ΠΈΠ·Π³ΠΈΠ±ΠΎΠΌ. ИсслСдовали Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° пластин с ΠΎΠ΄Π½ΠΎΡ‚ΠΈΠΏΠ½Ρ‹ΠΌΠΈ наполнитСлями ΠΈΠ· пСновинилопласта Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ плотности. РассмотрСно влияниС плотности ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ слоя наполнитСля Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. Показано, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ с Π½Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΌ большСй плотности ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ высокими характСристиками статичСской прочности ΠΈ устойчивости ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠΌ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌ Π½Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒ мСньшСй плотности
    • …
    corecore