393 research outputs found

    Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics

    Get PDF
    Aberrant DNA methylation, in particular promoter hypermethylation and transcriptional silencing of tumor suppressor genes, has an important role in the development of many human cancers, including renal cell carcinoma (RCC). Indeed, apart from mutations in the well studied von Hippel-Lindau gene (VHL), the mutation frequency rates of known tumor suppressor genes in RCC are generally low, but the number of genes found to show frequent inactivation by promoter methylation in RCC continues to grow. Here, we review the genes identified as epigenetically silenced in RCC and their relationship to pathways of tumor development. Increased understanding of RCC epigenetics provides new insights into the molecular pathogenesis of RCC and opportunities for developing novel strategies for the diagnosis, prognosis and management of RCC

    Wilms tumour resulting from paternal transmission of a TRIM28 pathogenic variant - A first report

    Get PDF
    Wilms tumour (nephroblastoma) is a renal embryonal tumour that is frequently caused by constitutional variants in a small range of cancer predisposition genes. TRIM28 has recently been identified as one such gene. Previously, observational data strongly suggested a parent of origin effect, whereby Wilms tumour only occurred following maternal inheritance of a pathogenic genetic variant. However, here we report a child with bilateral Wilms tumour who had inherited a pathogenic TRIM28 variant from their father. This finding suggests that genetic counselling for paternally inherited pathogenic variants in TRIM28 should include discussion of a potential risk of Wilms tumour

    Analysis of Germline Variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in Familial and Sporadic Renal Cell Carcinoma

    Get PDF
    BACKGROUND:The investigation of rare familial forms of kidney cancer has provided important insights into the biology of sporadic renal cell carcinoma (RCC). In particular, the identification of the von Hippel Lindau (VHL) familial cancer syndrome gene (VHL) provided the basis for the discovery that VHL is somatically inactivated in most sporadic clear cell RCC. Many cases of familial RCC do not have mutations in known RCC susceptibility genes and there is evidence that genetic modifiers may influence the risk of RCC in VHL disease patients. Hence we hypothesised that low-penetrance functional genetic variants in pathways related to the VHL protein (pVHL) function might (a) modify the phenotypic expression of VHL disease and/or (b) predispose to sporadic RCC. METHODOLOGY/PRINCIPAL FINDINGS:We tested this hypothesis for functional polymorphisms in CDH1 (rs16260), IGFBP3 (rs2854744), MMP1 (rs1799750), MMP3 (rs679620), STK15 (rs2273535) and VEGF (rs1570360). We observed that variants of MMP1 and MMP3 were significant modifiers of RCC risk (and risks of retinal angioma and cerebellar haemangioblastoma) in VHL disease patients. In addition, higher frequencies of the MMP1 rs1799750 2G allele (p = 0.017, OR 1.49, 95%CI 1.06-2.08) and the MMP1/MMP3 rs1799750/rs679620 2G/G haplotype (OR 1.45, 95%CI 1.01-2.10) were detected in sporadic RCC patients than in controls (n = 295). CONCLUSIONS/SIGNIFICANCE:These findings (a) represent the first example of genetic modifiers of RCC risk in VHL disease, (b) replicate a previous report of an association between MMP1/MMP3 variants and sporadic RCC and (c) further implicate MMP1/MMP3-related pathways in the pathogenesis of familial and sporadic RCC

    Genomic imprinting disorders: lessons on how genome, epigenome and environment interact

    Get PDF
    Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos

    A novel PCFT gene mutation (p.Cys66LeufsX99) causing hereditary folate malabsorption

    Get PDF
    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder which is characterized by impaired intestinal folate malabsorption and impaired folate transport into the central nervous system. Mutations in the intestinal folate transporter PCFT have been reported previously in only 10 individuals with this disorder. The purpose of the current study was to describe the clinical phenotype and determine the molecular basis for this disorder in a family with four affected individuals. A consanguineous family of Pakistani origin with autosomal recessive HFM was ascertained and clinically phenotyped. After genetic linkage studies all coding exons of the PCFT gene were screened for mutations by direct sequencing. The clinical phenotype of four affected patients is described. Direct sequencing of PCFT revealed a novel homozygous frameshift mutation (c.194dupG) at a mononucleotide repeat in exon 1 predicted to result in a truncated protein (p.Cys66LeufsX99). This report extends current knowledge on the phenotypic manifestations of HFM and the PCFT mutation spectrum

    Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    Get PDF
    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).This is the author accepted manuscript. The final version is available from Cell Press (Elsevier) via http://dx.doi.org/10.1016/j.tig.2016.05.001
    • …
    corecore