
Genetic Stratification of Inherited and Sporadic Phaeochromocytoma and 

Paraganglioma: Implications for Precision Medicine 

 Ruth Casey (1,2), Hartmut P.H. Neumann (3), Eamonn R Maher (1) 

 

 

1.   Department of Medical Genetics, University of Cambridge and NIHR Cambridge 

Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge 

Biomedical Campus, Cambridge CB2 0QQ, UK 

2.   Department of Endocrinology, Cambridge University Hospital Foundation Trust, 

Cambridge, CB2 0QQ, UK 

3.  Section for Preventive Medicine, Faculty of Medicine, Albert-Ludwigs-University, 

Freiburg, Germany   

 

Correspondence 

Email: rc674@medschl.cam.ac.uk 

Email: hartmut.neumann@uniklinik-freiburg.de 

E-mail: erm1000@medschl.cam.ac.uk 

 

 

  

mailto:rc674@medschl.cam.ac.uk


Abstract 

Over the past two decades advances in genomic technologies have transformed knowledge of the 

genetic basis of phaeochromocytoma and paraganglioma (PPGL). Though traditional teaching 

suggested that inherited cases accounted for only 10% of all phaeochromocytoma diagnosis, 

current estimates are at least three times this proportion. Inherited PPGL is a highly genetically 

heterogeneous disorder but the most frequently results from inactivating variants in genes 

encoding subunits of succinate dehydrogenase. Expanding knowledge of the genetics of PPGL 

has been translated into clinical practice by the provision of widespread testing for inherited 

PPGL. In this review, we explore how the molecular stratification of PPGL is being utilised to 

enable more personalised strategies for investigation, surveillance and management of affected 

individuals and their families. Translating recent genetic research advances into clinical service 

can not only bring benefits through more accurate diagnosis and risk prediction but also 

challenges when there is a suboptimal evidence base for the clinical consequences or 

significance of rare genotypes. In such cases, clinical, biochemical, pathological and functional 

imaging assessments can all contribute to more accurate interpretation and clinical management.   



 

Introduction 

Phaeochromocytomas and paragangliomas (PPGL) are well-vascularised tumors that arise from 

cells derived from the sympathetic (e.g., adrenal medulla or sympathetic trunk) or 

parasympathetic (e.g., carotid body, glomus tympanicum, glomus jugulare, glomus vagale etc.) 

paraganglia. According to the World Health Organization (WHO) classification (1), the term 

phaeochromocytoma is reserved exclusively for tumors of the adrenal medulla, whereas the term 

paraganglioma is recommended for tumors at all the other extra adrenal sites (though 

paragangliomas derived from parasympathetic ganglia are commonly referred to as head and 

neck paraganglioma (HNPGL) and sympathetic paraganglioma as paraganglioma). Both 

phaeochromocytomas and paragangliomas (PPGL) may contain elements of related neurogenic 

tumors such as ganglioneuroma, ganglioneuroblastoma, neuroblastoma etc. Such tumors are 

referred to as composite phaeochromocytomas or composite paragangliomas, respectively. Over 

the last two decades, advances in the genetics of phaeochromocytoma has led to improved 

molecular diagnosis, effective predictive testing of asymptomatic relatives and informed gene-

specific medical management. 

PPGL has a very high heritability rate and almost half of all cases (~40%) can be attributed to an 

inherited mutation. To date, more than 15 PPGL predisposition genes (PCGs) (including NF1, 

RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, MAX, EPAS1, TMEM127, DLST, 

MDH2, GOT2, SLC25A11, DNMT3A) have been implicated in hereditary PPGL and this number 

increases every year with the increasing uptake of large scale genomic sequencing (2, 3 and 

references within). Traditionally, hereditary PPGL was considered to account for approximately 

10% of cases and occur predominantly as part of three familial syndromes: Neurofibromatosis 

type 1 (NF1), caused by germline mutations in the neurofibromin 1 gene (NF1), Multiple 

Endocrine Neoplasia type 2 (MEN2) caused by germline mutations in the RET proto-oncogene 

and Von Hippel Lindau disease (VHL) caused by germline mutations in the VHL tumour 

suppressor gene (4, 5, 6). Each of these syndromes are associated with other characteristic 

phenotypic features and although each predisposes to phaeochromocytoma (including bilateral 

tumours), paragangliomas are unusual (2).  



At the start of this century, the seminal findings that inherited HNPGL and PPGL could be 

caused by germline mutations in genes encoding three subunits (SDHB, SDHC, SDHD) of 

succinate dehydrogenase were reported (7, 8, 9, 10). It quickly became apparent that the 

frequency of germline mutations in individuals with PPGL was much higher than 10% (11) and 

that many cases of apparently sporadic non-syndromic PPGL were inherited. Furthermore, these 

findings kick-started an era of PPGL gene discovery and additional PPGL predisposition genes 

were then identified. The genetic landscape of inherited PPGL is complex and heterogeneous 

(see below) but the ability to identify individuals with germline mutations has changed clinical 

practice around surveillance in patients and their relatives (12, 13). Though the impact on 

therapy is currently much more limited, gene-stratified functional studies are providing important 

insights into the molecular pathogenesis of PPGL. For example, transcriptomic analysis has 

facilitated a better understanding of the major pathways perturbed and suggested that inherited 

PPGL can be subclassified into two broad transcriptomic categories, either an angiogenic cluster 

(14) or a kinase signalling cluster (15).  Furthermore epigenetic and metabolomic profiling, 

immunohistochemistry and in vivo functional imaging can all be applied to further sub-

characterise PPGL (16). In this review we describe the molecular basis and genotype-phenotype 

correlations of inherited PPGL and outline how progress in omic technologies could lead to a 

new age of precision management and targeted therapies for PPGL. 

Genomic Landscape of PPGL     

PPGL Predisposition Genes 

More than fifteen different genes have been implicated in autosomal dominant familial PPGL to 

date. The succinate dehydrogenase genes (SDHA, SDHB,  SDHC and SDHD) are the  most 

common inherited PPGL predisposition genes, followed by mutations in genes associated with 

syndromic presentations as described above (VHL, RET and NF1 genes).  Mutations in any of the 

four SDHx genes or the SDHAF2 gene which encodes its namesake protein responsible for the 

flavination of the SDHA protein, leads to disruption of the succinate dehydrogenase enzyme in 

the citric acid cycle and accumulation of the oncometabolite succinate which drives 

tumorigenesis by inhibiting alpha-ketoglutarate dependent dioxygenase enzymes leading to 

hypermethylation and pseudohypoxia (17) (see Figure 1). Mutations in these genes predispose to 



multi-focal and synchronous PPGL which can be parasympathetic arising in the head and neck or 

mediastinum or sympathetic and develop in the abdomen and pelvis. SDHx mutations also 

predispose to non-PPGL tumours including gastrointestinal stromal tumours, renal cell 

carcinoma and rarely pituitary tumours (12).  

Mutations in further citric acid cycle genes have been implicated in hereditary PPGL including 

germline mutations in the fumarate hydratase (FH) gene (associated with hereditary 

leiomyomatosis, renal cell carcinoma and rarely phaeochromocytoma) (18, 19). Malate 

Dehydrogenase (MDH2) (implicated in rare cases of familial PPGL) (20) and more recently 

germline mutations in the gene encoding the mitochondrial 2-Oxoglutarate/Malate Carrier 

(SLC25A11) (21) and in a gene encoding a component of the oxoglutarate dehydrogenase 

complex; dihydrolipoamide S-succinyltransferase  (DLST), have also been implicated in rare 

cases of familial PPGL (22). The mechanisms of tumorigenesis provoked by citric acid cycle 

mutations (namely hypermethylation and pseudohypoxia) have also recently led to the discovery 

that a gain of function mutations in a DNA methyltransferase gene (DNMT3A) is also rarely be 

implicated in familial PPGL (23). 

Beyond citric acid cycle predisposition genes and syndromic causes of familial PPGL, mutations 

in genes involved in the regulation of kinase pathways including; TMEM127, a gene which 

encodes a transmembrane protein involved in modulation of the mTOR pathway (24) and 

mutations in the MYC associated factor X (MAX ) gene (25), the Hypoxia Inducible Factor-2 

alpha subunit gene (HIF2A/EPAS1)  (26) and EGLN1/PHD2 (27) complete the list of the genes 

currently proposed to be implicated in familial PPGL.  

Somatic events and tumourigenic pathways in PPGL 

The somatic genetic and epigenetic events in both inherited and sporadic PPGL tumorigenesis 

have been delineated by targeted and genome-wide sequencing studies and epigenetic and 

metabolomic investigations. A large number of genes have been reported to harbour germline 

(see above and/or somatic mutations in PPGL but PPGL are noteworthy because each tumour 

typically has a low mutation load and in many cases only a single driver mutation (germline or 

somatic) is detected (28). For inherited PPGL the germline mutation usually inactivates a tumour 

suppressor gene (e.g. NF1, VHL, SDHX, MAX, FH, TMEM127 etc.) and the PPGL contains a 



somatic event (giving “two hits”) such as a large chromosomal deletion, somatic mutation or 

promoter methylation with transcriptional silencing that inactivates the wild-type allele (29, 28). 

In sporadic PPGL, the most common copy number abnormalities are loss at chromosome 1p, 3p, 

3q 11p, 17, 21q and 22q loss (28) which include the VHL (3p25) and NF1 (17q11.2) gene 

locations. Overall, somatic inactivating mutations in NF1 and VHL or somatic activating 

mutations in RET and EPAS1 occur in ~25% of sporadic PPGL but somatic mutations in other 

inherited PPGL such as SDHx or FH are rare (28, 30).  A number of genes that have not been 

implicated in inherited PPGL have been reported to be somatically mutated in PPGL including 

HRAS, BRAF, SETD2, FGFR1, TP53, ATRX, ARNT , IDH1, H3F3A, MET, CSDE1. In addition , 

MAML3 fusion genes and structural rearrangements in telomerase reverse transcriptase (TERT) 

have been described  (28, 31). Interestingly, as often each PPGL includes a single driver 

mutation and somatic HRAS mutations occur in ~10% of sporadic PPGL but not inherited PPGL, 

it has been suggested that if a HRAS mutation is detected by somatic mutation profiling, the risk 

of inherited disease will be low (32).  

Though a large number of genes have been implicated in the molecular pathogenesis of inherited 

and sporadic PPGL, many can be linked to a number of key signalling pathways. A decade ago, 

transcriptomic analysis of PPGL suggested two distinct subcategories comprising Cluster 1 that 

was characterised by upregulation of hypoxia signalling pathways and Cluster 2 in which there 

was no hypoxic signal but kinase signalling pathways were upregulated (14). Unsurprisingly, 

tumours with mutations in VHL and HIF2A/EPAS1 (pVHL is a negative regulator of the hypoxia 

induced transcription factors HIF-1 and HIF2) map to Cluster 1. In addition, SDHX, FH, MDH, 

and SLC25A11-mutated tumours fall into Cluster 1 (30). In these cases the intracellular 

accumulation of the relevant oncometabolite (succinate, fumarate etc.) inhibits hydroxylation of 

key HIF1A/HIF2A proline residues that are required for pVHL to bind and initiate proteasomal 

degradation of the HIF-alpha subunits ((PPGL-associated mutations in HIF2A usually affect 

binding of pVHL to this proline residue (P531)) (33, 34, 35). The pVHL protein has a key role in 

targeting the HIF2A protein for proteasomal degradation and somatic inactivating mutations in 

VHL and activating mutations in HIF2A will both result in stabilisation of HIF2A and activation 

of hypoxic gene response pathway (26, 36). The oncometabolites also inhibit other alpha-

ketoglutarate-dependent enzymes including the TET (ten-eleven translocation) proteins that 

actively demethylate DNA demethylation and SDHX, FH, MDH, and SLC25A11-related tumours 



are characterised by genome methylation (16, 21). Recently, it has been reported that these 

oncometabolites also inhibit homology-dependent DNA repair (HDR) pathways by causing 

aberrant hypermethylation of histone 3 lysine 9 at DNA breaks resulting in impaired HDR (37, 

38) (see Figure 1).  Thus though Cluster 1 tumours are characterised by activation of a 

pseudohypoxic gene response, there is heterogeneity for other pathways including DNA 

methylation and DNA repair (see Table 1).   

Within Cluster 2 there is also genetic and pathway heterogeneity. Mutations in RET, NF1, 

TMEM127, MAX and HRAS, deregulate to varying degrees kinase pathways including 

PI3K/AKT, RAS/RAF/ERK amf mTORC1 pathways (REFS). Wnt-pathway alterations have 

been associated with somatic CSDE1 mutations and MAML3 fusion events (28) (see Table 1). 

Other somatic events include TERT promoter mutations and mutations in ATRX, an epigenetic 

regulator (39, 40).  

Demographic and Phenotypic Correlations in Inherited PPGL 

The presence of non-neoplastic syndromic features and non-PPGL tumour types can lead to 

suspicion of a syndromic diagnosis (e.g. medullary thyroid cancer in MEN2, haemangioblastoma 

and VHL disease etc. which can then be confirmed by diagnostic testing. Similarly the presence 

of a family history of PPGL or HNPGL or of bilateral or multiple PPGL will invariably suggest 

the presence of an underlying genetic predisposition and trigger genetic testing. However a range 

of other clinical, biochemical, pathological and imaging features can also be used to inform 

predictions about the likelihood of a genetic cause: 

i) Age: A young age at presentation is associated with a higher risk of a germline pathogenic 

variant in a PPGL gene. Diagnostic yields as high as 80% have been reported in paediatric 

populations with PPGL, compared to 30-40% in adult populations (41).  

ii) Tumour location: Extra adrenal location is major phenotypic predictor of germline SDHx 

genes mutations (42). The diagnostic yield for pathogenic variants in inherited PPGL genes in 

individuals with a paraganglioma was can be six times higher than in those with an isolated 

adrenal phaeochromocytoma (43).  



 iii)  Tumour secretory phenotype: Biochemical testing is an essential step in the diagnostic 

pathway for PPGL and current guidelines recommend urinary or plasma metanephrines and 

plasma 3-methoxytyramine (3MT) as the first line biochemical tests in the diagnosis of PPGL 

(44).  The pattern of catecholamine secretion from a PPGL is determined by paraganglial cell 

differentiation and therefore biochemistry can be used to predict genotype and or malignant 

potential. Pseudohypoxic or ‘Cluster 1’ PPGL are characterised by poor differentiation of 

paraganglia cells and reduced expression of a catecholamine conversion enzyme called 

Phenylethanolamine N-methyltransferase (PNMT). Reduced expression of this enzyme affects 

the conversion of noradrenaline to adrenaline, resulting in a predominant noradrenergic secretory 

pattern in tumours harbouring mutations in the ‘cluster 1’ genes (45). In addition to reduced 

expression of PNMT, SDHx mutated tumours also have reduced activity of the enzyme 

dopamine-β-hydroxylase, responsible for the conversion of dopamine to norepinephrine in the 

catecholamine synthesis pathway. Therefore elevated levels of dopamine or its metabolite 3- 

methoxytyramine is also a characteristic biochemical signature of SDH deficient PPGL (46). 

Elevated dopamine can be viewed as a surrogate marker for poor paraganglia cell differentiation 

and elevated levels of 3-methoxytyramine has been validated as an independent predictor of 

malignant disease (45).  Finally, SDHx mutations can also affect the expression and or activity of 

the rate limiting enzyme in catecholamine synthesis; tyrosine hydroxylase, explaining why non-

secretory PPGL are also more commonly associated with SDHx gene mutations (46). In contrast,  

‘cluster 2’ tumours are predominantly driven by mutations in kinase signalling genes, have a 

more mature phenotype associated with increased expression of PNMT and a mixed or 

predominately adrenergic secretory pattern (45)(28).  

 iv) Malignancy: About 10% of PPGL are malignant (higher in paraganglioma than in 

phaeochromocytoma). Germline SDHx, particularly SDHB mutations, are associated with a 

higher risk of malignancy and a recent meta analysis has suggested a rate of metastatic PPGL of 

48.9% in SDHB mutation carriers compared to a rate of 8.9% in non-SDHB mutation carriers 

(30). Two rarer PPGs linked to malignant PPGL are FH and SLC25A11 (47, 21).  An increased 

risk of aggressive and metastatic disease has been associated with somatic ATRX mutations, 

MAML3 fusions and TERT activation (28).   

https://www.sciencedirect.com/topics/medicine-and-dentistry/metastatic-carcinoma
https://www.sciencedirect.com/topics/medicine-and-dentistry/somatic-mutation
https://www.sciencedirect.com/topics/medicine-and-dentistry/somatic-mutation
https://www.sciencedirect.com/topics/medicine-and-dentistry/somatic-mutation


v)  Immunohistochemistry: Histopathological examination is not a reliable predictor of 

malignancy in PPGL and the diagnosis of malignancy is dependent on the presence of distant 

metastases (48). However immunohistochemistry (IHC) is an important tool for detecting or 

confirming inherited PPGL. Biallelic inactivation (i.e. a germline mutation and somatic “second 

hit”) of any of the SDHx genes will typically destabilise the SDH enzyme complex resulting in 

proteolytic degradation of the anchor SDHB protein, which can be detected by loss of staining 

for the SDHB protein by IHC (49). Thus, SDHB IHC can be used to identify PPGL harbouring 

an SDHx mutation and as a functional tool for assessing the pathogenicity of uncharacterised or 

novel SDHx variants. IHC for SDHA expression can predict the presence of pathogenic SDHA 

variants specifically in the SDHA gene and can be utilised in clinical practice (50). The 

interpretation of variants in FH is facilitated by IHC to detect loss of expression of the fumarate 

hydratase protein (by FH IHC) or by the detection of protein succinylation (a post-translational 

modification resulting from the reaction of excess fumarate with cysteine residues) shown by 

positive staining to S-(2-succinyl)-cysteine (2SC) (51). IHC may also be utilised for other 

hereditary causes of PPGL including assessment of MAX expression and IHC for the 

membranous expression of carbonic anhydrase 9 (CA-9) in the assessment of germline or 

somatic VHL gene mutations (52). In some cases loss of SDHB expression may not result from a 

SDHX mutation but from a germline or somatic VHL gene mutation (53).  

 

5. Personalised Medicine Approaches in Pheochromocytoma and Paraganglioma 

The molecular stratification of patients with PPGL through germline and somatic testing opens 

up the possibility of genotype-driven personalised therapy. This might be considered from a 

variety of perspectives (see below) and for individuals who do or do not have a pathogenic 

variant in a PPG but also, the less definitive situation in which a VUS is detected or inherited 

PPGL is suspected but molecular confirmation is not available (see Table 2). As described 

above, there are a number of strategies available to enable precision medicine. including genetic 

testing, immunohistochemistry and functional imaging. What is the current and future role of 

these in clinical practice? 



1.   The Who and How of genetic testing: In view of the high diagnostic yield of germline testing 

in individuals with PPGL, it has been argued that a universal genetic testing strategy should be 

employed. However currently (though this is likely to change as genetic testing becomes less 

expensive) most centres practice some form of selective testing. Patients with features of an 

inherited syndrome, family history of PPGL (or a relevant tumour e.g RCC or GIST) or multiple 

tumours (e.g. two PPGL or a PPGL and a related tumour such as HNPGL, wtGIST, RCC etc.) 

should be routinely offered testing. Based on the genotype-phenotype correlations discussed 

above, those with an extra-adrenal location (sympathetic paraganglioma) or metastatic disease 

also qualify for testing. For patients with an isolated pheochromocytoma, the decision to test is 

usually based on a younger age at diagnosis (e.g. <60 years but some centres may have lower age 

limits) but incorporation of additional factors such as biochemical profile or 

immunohistochemistry (see below) may influence the decision to test older patients. Most 

centres will offer testing with a large panel of PPGL susceptibility genes (either a custom gene 

panel or exome sequencing with “virtual gene panel”) that will typically include major PPGL 

genes  (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, FH, MAX, EPAS1, TMEM127) but not 

necessarily rarer susceptibility genes.  Hence if first-line testing is negative then inclusion of 

additional genes or further analysis for cryptic mutations that may not be detected by routine 

testing (e.g. for VHL (54), immunohistochemistry or tumour testing may be considered. 

Combined germline and tumour mutation analysis has resulted provided a diagnostic yield for 

germline/somatic driver mutation of ~80% (30) but not all driver events are genetic, somatic 

epimutations in the promoter region of the SDHC gene have been reported wtGIST and 

occasionally in PPGL (55, 56).  

The detection of a germline or genetic variant may not provide an unequivocal diagnosis, 

Resolving the pathogenicity of rare variants of uncertain significance (VUS), particularly in less 

frequently tested genes can be challenging but may be facilitated by IHC (see above), 

segregation analysis in familial cases, somatic testing (e.g. by finding LOH or somatic variant 

that is not usually detected in familial disease) or functional imaging (see below).  

In most centres germline testing is performed in the first instance as, though tumour testing can 

have some advantages, in most cases only formalin-fixed material is available for analysis. 



2. Role of Immunohistochemistry: in addition to its utility in variant interpretation (see above), 

can be used to screen for PPGL that require germline testing but have not been selected. Thus in 

some centres, SDHB IHC is performed in older patients with isolated phaeochromocytoma. 

Though such an approach could be extended to screen for MAX and FH-related 

phaeochromocytoma, these are much rarer.  

3. Role of functional imaging for PPGL Precision Medicine: Nuclear imaging techniques can be 

utilised as adjuncts to morphological cross sectional imaging studies and have diagnostic and 

theranostic utility in the management of PPGL.  Nuclear imaging tracers specific for PPGL can 

be sub-classified based on their target ligand into three groups; i) catecholamine storage and 

synthesis (123I-metaiodobenzylguanidine, 18F-fluorodopamine (18F-FDA), and 18F-

fluorodihydroxyphenylalanine (18F-FDOPA), ii) somatostatin receptor (111Indium-pentetreotide 

and Gallium-68 DOTA-conjugated peptide (68Ga DOTATATE), iii) glucose metabolism (18F-

Fluorodeoxyglucose (18F-FDG). The selection of the most appropriate tracer for surveillance or 

diagnosis of PPGL is influenced by the patient genotype and the associated interplay with 

tumour biology, tumour location and tumour secretory pattern, all of which influence the 

expression of receptors targeted by functional imaging tracers, giving rise to a so called 

‘functional imaging phenotype’ (57). 

The tracer 123/131 I-metaiodobenzylguanadine (MIBG) is taken up by the noradrenaline 

transporter (NET) however; the sensitivity of 123/131 I-MIBG scintigraphy is affected by 

tumour de-differentiation resulting in loss of NET expression, therefore increasing the risk of 

false negative results using 123/131 I-MIBG scintigraphy. Furthermore, mutations in SDHx are 

also associated with downregulation of the NET transporter, affecting the sensitivity of 

123/131I-MIBG scintigraphy in SDH-deficient tumours (58). Therefore, current 

recommendations advice that 123/131I-MIBG scintigraphy should be reserved for those cases 

being investigated for suitability of treatment with 123/131I-MIBG radionuclide therapy rather 

than for  surveillance, diagnosis or the detection of occult metastases particularly in those 

patients with suspected SDHx mutations (59). Similar issues with sensitivity are seen with the 

tracer 18F-FDA, also taken up by the NET transporter.  The imaging tracer 18F-FDOPA is taken 

up via neutral amino acid transporter system L and the sensitivity of 18F-FDOPA PET CT is 

notably reduced in patients with SDHx mutations and although the exact mechanism for this is 



not fully understood it is thought to relate to the truncated citric acid cycle and the impaired 

secretory status of SDHx mutated tumours (57). 

The sensitivity of 18F-FDG PET-CT also differs depending on the driver genetic mutation, as 

cluster 1 tumours exhibit attenuated glycolysis and demonstrate increased standard uptake values 

(SUV) of 18F- FDG due to increased expression of glucose transporters and glycolytic enzymes 

(60). 

The tracer 68 Ga-DOTATATE can be used to identify tumours expressing somatostatin receptor 

subtype 2 and a recent meta-analysis of 8 studies reviewing the sensitivity of functional imaging 

modalities for the detection of PPGL of unknown genotype, demonstrated that 68-Gallium 

DOTATATE PET CT had a pooled sensitivity of 93% and was superior to 18F FDG PET CT, 

18F-FDOPA and 123/131 I-MIBG scintigraphy (61). An earlier meta-analysis also reported a 

superior sensitivity for the detection of SDHx mutated PPGL using 68-Gallium DOTATATE 

PET CT compared to 18F FDG PET CT. (62) 

Therefore 68-Gallium DOTATATE PET CT is now recommended as the imaging modality of 

choice for staging and surveillance in patients with SDHx mutated PPGL or sporadic or 

metastatic PPGL (63). In addition to the diagnostic role, 68Ga-DOTATATE PET/CT can also 

predict the efficacy of peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE 

for patients with metastatic PPGL. In centres where 68-Ga-DOTATATE PET CT is not 

available, 18F FDG PET CT would be a reasonable alternative tracer to consider for staging and 

surveillance in patients with SDHx mutated PPGL. On the contrary, 68-Ga-DOTATATE PET 

CT has demonstrated poor sensitivity in patients with EPAS1 mutations and therefore 18F-

DOPA PET CT is recommended as the first line functional imaging modality for surveillance in 

patients with EPAS1 mutations or patients with cluster 2 gene mutations (RET, MAX, NF1) who 

are at higher risk of phaeochromocytoma owing to the high tumor to background normal adrenal 

uptake of this tracer compared to 68-Ga-DOTATATE (63, 64) 

3. Surgical management: the primary treatment of a single localised PPGL will generally be 

surgical but a clinical or molecular diagnosis of inherited PPGL prior to surgery may influence 

the surgical strategy. For example in individuals with MEN-2A/B or VHL disease with 

phaeochromocytoma, who are at risk of a further tumour in the other adrenal gland, an adrenal 



cortical sparing approach can be preferable (65). When a PPG mutation has been detected the 

risks of further primary tumours and of malignant disease will need to be considered and is 

informed by established genotype-phenotype correlations.  

4. Post surgical follow up: Individuals with PPGL and a PPG mutation should be designated for 

lifelong follow to enable early detection of further primary PPGL and non-PPGL tumours and 

metastatic disease, the specific risks of these events is dependent on the PPG implicated. For 

example risk of metastatic disease is highest with SDHB mutations (42) but metastatic disease 

developed in an individual with a germline SDHA mutation more than two decades after the 

initial paraganglioma (66). Surveillance protocols for non-PPGL tumours in inherited 

multisystem inherited cancer syndromes such as VHL disease, MEN2, HLRCC and NF1 have 

been described elsewhere (67, 68, 69, 70). For individuals with germline mutations in non-

syndromic genes (SDHX, MAX, TMEM127 and rarer genes) there is a recent trend towards 

moving to a more gene specific approach to surveillance up of affected individuals and 

asymptomatic gene carriers (see Table 3).  

5. Management of metastatic disease: widely used first line treatments for metastatic PPGL 

include cytotoxic chemotherapeutic regimes (cyclophosphamide, vincristine and dacarbazine) 

targeted therapies such as sunitinib and temozolomide (71) or radiopharmaceutical options such 

as  131I-MIBG, 90Y- and 177Lu-DOTATATE (72, 73). In general these have been applied 

irrespective of the genetic background but increasing evidence for genotype-specific differences 

in the cellular pathways dysregulation in inherited PPGL (e.g. hypoxia-gene response pathways 

in VHL and SDHx-mutated PPGL and DNA methylation and chromatin regulation in TCA gene 

mutations (see above)) is paving the way for molecularly-stratified clinical  trials targeting 

specific mechanisms of tumorigenesis. Angiogenic inhibition by tyrosine kinase inhibitors such 

as sunitinib and sorafenib are widely used for the treatment of metastatic RCC in VHL 

inactivation is frequent (74). More precise targeting of hypoxic gene response pathways is 

promised by the development of HIFa-antagonists such as PT2977 (75) which is currently being 

evaluated in VHL disease patients with RCC and might prove to be an option for metastatic 

Cluster 1 PPGL. The demonstration of genome hypermethylation and inpaired HDR pathways in 

SDHx and FH-related tumorigenesis suggests a potential role for demethylating agents and 



PARP inhibitors (37). If such approaches prove to be successful then we would expect that 

genotype-driven treatment for metastatic PPGL will become an established part of clinical care.  

 6. Cascade testing and surveillance of at risk relatives. The identification of a pathogenic PPG 

variant in an affected individual enables genetic testing of their relatives to determine tumour 

risks and need for tumour surveillance. As for affected individuals (see above) there is an 

increasing trend towards genotype-specific surveillance of asymptomatic gene carriers identified 

through familial testing. Though all the major causes of inherited PPGL are caused by 

monoallelic pathogenic variants, for germline mutations in SDHD, SDHAF1 and MAX there are 

important parent-of-origin effects on tumour risks which mean that maternal transmission of a 

pathogenic variant is associated with a low risk of clinical disease and this is reflected in the 

gene-specific surveillance programmes (see Table 3). 

Conclusion 

Over the past two decades our knowledge of the genetic basis of PPGL has been transformed and 

aspects of the clinical management PPGL are increasingly being influenced by the results of 

genetic testing. With falling costs of genomic technologies we anticipate that genetic testing for 

PPGL will become eventually universal and more comprehensive (e.g. by application of 

germline whole genome sequencing and tumour testing for somatic mutations) However, in 

order for PPGL to become an exemplar of personalised medicine important challenges remain in 

particular (i) improving variant interpretation to reduce the number of VUSs, (ii) accurate tumour 

risk prediction for each PPGL gene in various clinical settings, (iii) establishing the optimal 

genotype-specific surveillance protocols that enable both accurate early tumour diagnosis 

without undue health care costs or iatrogenic risks, (iv) elucidating what the optimal targeted 

therapies for metastatic disease are based on the specific driver PPGL gene.   
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Table 1:  

Gene Germlin

e or 

somatic 

Germlin

e 

mutatio

n 

frequenc

y in 

inherite

d 

PPGL* 

Somatic 

mutatio

n 

frequenc

y in 

sporadic 

PPGL*  

Hypoxic 

pathway

s 

activate

d 

DNA 

hyperme

thylatio

n 

Impaire

d HDR 

Kinase 

pathway 

dysregul

ation 

Wnt 

Pathway 

dysregul

ation 

NF1 Both 3% 
9% 

- - - + - 

RET Both 6% 
9% 

- - - + - 

VHL Both 4% 3% + - - - - 

SDHA Germlin

e 

1% Rare + + + - - 

SDHB Germlin

e 

9% Rare + + + - - 

SDHC Germlin

e 

1% Rare + + + - - 

SDHD Germlin

e 

2% Rare + + + - - 

FH Germlin

e 

1% Rare + + + - - 

HIF2A Both Rare 5% + - - - - 

MAX Germlin

e 

1% Rare - - - + - 

TMEM1

27 

Germlin

e 

0.6% Rare - - - + - 



HRAS Somatic - 
10% 

- - - + - 

CSDE1 
Somatic - 2% - - - - + 

 

*Estimates mainly taken from Fishbein et al (2017) 

 

 

 

 

  



Table 2: Aspects of PPGL management that are influenced by results of genetic testing  

  Germline 

pathogenic variant 

(PV) detected 

Germline VUS in 

PSG or significant 

risk factors* 

No genetic variant 

and no risk factors 

Proband follow up for 

recurrence/metastatic 

disease 

Lifelong Assess after 10 

years 

10 years 

Surveillance for non-

PPGL tumours 

Yes - specific 

surveillance 

dependent on 

relevant gene  

Occasionally 

applicable if strong 

suspicion of a 

syndromic cause 

 No* 

Genetic testing of 

relatives 

Offered Usually not 

applicable 

Not applicable 

Surveillance of 

relatives for PPGL 

Screening offered 

to PV positive 

individuals; tailored 

to specific gene 

Potentially 

applicable e.g. if 

strong family 

history 

Not applicable* 



Treatment of 

metastatic disease 

First line therapies  

generally as per 

standard protocols 

Second line 

treatment options 

should include 

genotype-driven 

clinical trials (see 

text), 

Usually as per 

standard protocols 

As per standard 

protocols 

*assuming no clinical or pathological features that suggest a genetic cause is likely 

 

  



Table 3: Examples of genotype-specific surveillance for asymptomatic mutation carriers of non-

syndromic PPGL  

Gene Recommended surveillance 

SDHB ·Annual clinical review and biochemistry 

·Abdominal imaging at baseline and if normal every 12-24 months 

·MRI/CT of neck, thorax at baseline and if normal every 3 years 

SDHD ·Screening should only be offered to patients who have a paternally 

inherited SDHD variant * 

·Annual clinical review and biochemistry 

·Abdominal imaging and MRI/CT of neck, thorax at baseline and if 

normal every 3 years 

SDHC ·Annual clinical review and biochemistry 

·Abdominal imaging and MRI/CT of neck, thorax at baseline and if 

normal every 3 years 

SDHA ·Annual clinical review and biochemistry 

·Abdominal imaging and MRI/CT of neck, thorax at baseline and if 

normal every 3-5years 

 



 Recommended surveillance 

MAX** ·Screening should only be offered to patients who have a paternally 

inherited MAX variant 

·Annual clinical review and biochemistry 

·Abdominal imaging  at baseline and if normal every 3 years 

·MRI  of neck, thorax at baseline and if normal every 5 years 

TMEM127** ·Annual clinical review and biochemistry 

·Abdominal imaging* at baseline and if normal every 3 years 

·MRI of neck, thorax at baseline and if normal every 5 years 

SDHAF2 ·Screening should only be offered to patients who have a paternally 

inherited SDHAF2 variant 

·Annual clinical review and biochemistry 

·Abdominal imaging  at baseline and if normal every 3 years 

·MRI  of neck, thorax at baseline and if normal every 5 years 

 

 

 

 

 

 



Figure Legends 

Figure1: Illustration of how pathogenic variants in citric acid cycle genes result in enzyme 

dysfunction in the mitochondria resulting in accumulation of  oncometabolites (shown in red) 

(e.g. succinate with succinate dehydrogenase subunit gene mutations). The oncometabolites and 

inhibit 2-oxyglutarate dependant enzymes (including demethylase enzymes and prolyl 

hydroxylase enzymes)  resulting in  pseudohypoxia and DNA hypermethylation phenotypes and 

impair homology-dependent DNA repair, promoting tumour development. 

 

 

IDH- isocitrate dehydrogenase 

SDH-Succinate dehydrogenase 

FH- Fumarate hydratase 

MDH-Malate dehydrogenase 

OGC-oxoglutarate carrier 

TET- Ten-eleven translocation enzyme 

PHD- prolyl hydroxylase enzymes 
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