114 research outputs found

    Management of Streptococcus mutans-Candida spp. Oral biofilms’ infections: Paving the way for effective clinical interventions

    Get PDF
    Oral diseases are considered the most common noncommunicable diseases and are related to serious local and systemic disorders. Oral pathogens can grow and spread in the oral mucosae and frequently in biomaterials (e.g., dentures or prostheses) under polymicrobial biofilms, leading to several disorders such as dental caries and periodontal disease. Biofilms harbor a complex array of interacting microbes, increasingly unapproachable to antimicrobials and with dynamic processes key to disease pathogenicity, which partially explain the gradual loss of response towards conventional therapeutic regimens. New drugs (synthesized and natural) and other therapies that have revealed promising results for the treatment or control of these mixed biofilms are presented and discussed here. A structured search of bibliographic databases was applied to include recent research. There are several promising new approaches in the treatment of Candida spp.–Streptococcus mutans oral mixed biofilms that could be clinically applied in the near future. These findings confirm the importance of developing effective therapies for oral Candida–bacterial infections.C.F.R. would like to acknowledge the UID/EQU/00511/2019 Project—Laboratory of Process Engineering, Environment, Biotechnology and Energy (LEPABE), financed by national funds through FCT/MCTES (PIDDAC). N.M. would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020—Northern Regional Operational Program” (NORTE-01-0145-FEDER-000012)

    Menopause in Central America: attitudes, symptoms and treatment.

    Get PDF
    UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA

    1H NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations

    Get PDF
    Commercial preparations of Ginkgo biloba are very complex mixtures prepared from raw leaf extracts by a series of extraction and prepurification steps. The pharmacological activity is attributed to a number of flavonoid glycosides and unique terpene trilactones (TTLs), with largely uncharacterized pharmacological profiles on targets involved in neurological disorders. It is therefore important to complement existing targeted analytical methods for analysis of Ginkgo biloba preparations with alternative technology platforms for their comprehensive and global characterization. In this work, 1H NMR-based metabolomics and hyphenation of high-performance liquid chromatography, photo-diode array detection, mass spectrometry, solid-phase extraction, and nuclear magnetic resonance spectroscopy (HPLC-PDA-MS-SPE-NMR) were used for investigation of 16 commercially available preparations of Ginkgo biloba. The standardized extracts originated from Denmark, Italy, Sweden, and United Kingdom, and the results show that 1H NMR spectra allow simultaneous assessment of the content as well as identity of flavonoid glycosides and TTLs based on a very simple sample-preparation procedure consisting of extraction, evaporation and reconstitution in acetone-d6. Unexpected or unwanted extract constituents were also easily identified in the 1H NMR spectra, which contrasts traditional methods that depend on UV absorption or MS ionizability and usually require availability of reference standards. Automated integration of 1H NMR spectral segments (buckets or bins of 0.02 ppm width) provides relative distribution plots of TTLs based on their H-12 resonances. The present study shows that 1H NMR-based metabolomics is an attractive method for non-selective and comprehensive analysis of Ginkgo extracts

    Estrogenic Plant Extracts Reverse Weight Gain and Fat Accumulation without Causing Mammary Gland or Uterine Proliferation

    Get PDF
    Long-term estrogen deficiency increases the risk of obesity, diabetes and metabolic syndrome in postmenopausal women. Menopausal hormone therapy containing estrogens might prevent these conditions, but its prolonged use increases the risk of breast cancer, as wells as endometrial cancer if used without progestins. Animal studies indicate that beneficial effects of estrogens in adipose tissue and adverse effects on mammary gland and uterus are mediated by estrogen receptor alpha (ERα). One strategy to improve the safety of estrogens to prevent/treat obesity, diabetes and metabolic syndrome is to develop estrogens that act as agonists in adipose tissue, but not in mammary gland and uterus. We considered plant extracts, which have been the source of many pharmaceuticals, as a source of tissue selective estrogens. Extracts from two plants, Glycyrrhiza uralensis (RG) and Pueraria montana var. lobata (RP) bound to ERα, activated ERα responsive reporters, and reversed weight gain and fat accumulation comparable to estradiol in ovariectomized obese mice maintained on a high fat diet. Unlike estradiol, RG and RP did not induce proliferative effects on mammary gland and uterus. Gene expression profiling demonstrated that RG and RP induced estradiol-like regulation of genes in abdominal fat, but not in mammary gland and uterus. The compounds in extracts from RG and RP might constitute a new class of tissue selective estrogens to reverse weight gain, fat accumulation and metabolic syndrome in postmenopausal women

    Prediction of disability-free survival in healthy older people

    Get PDF
    Prolonging survival in good health is a fundamental societal goal. However, the leading determinants of disability-free survival in healthy older people have not been well established. Data from ASPREE, a bi-national placebo-controlled trial of aspirin with 4.7 years median follow-up, was analysed. At enrolment, participants were healthy and without prior cardiovascular events, dementia or persistent physical disability. Disability-free survival outcome was defined as absence of dementia, persistent disability or death. Selection of potential predictors from amongst 25 biomedical, psychosocial and lifestyle variables including recognized geriatric risk factors, utilizing a machine-learning approach. Separate models were developed for men and women. The selected predictors were evaluated in a multivariable Cox proportional hazards model and validated internally by bootstrapping. We included 19,114 Australian and US participants aged ≥65 years (median 74 years, IQR 71.6–77.7). Common predictors of a worse prognosis in both sexes included higher age, lower Modified Mini-Mental State Examination score, lower gait speed, lower grip strength and abnormal (low or elevated) body mass index. Additional risk factors for men included current smoking, and abnormal eGFR. In women, diabetes and depression were additional predictors. The biased-corrected areas under the receiver operating characteristic curves for the final prognostic models at 5 years were 0.72 for men and 0.75 for women. Final models showed good calibration between the observed and predicted risks. We developed a prediction model in which age, cognitive function and gait speed were the strongest predictors of disability-free survival in healthy older people. Trial registration Clinicaltrials.gov (NCT01038583)

    In-Vitro Susceptibility of Mycobacterium Tuberculosis to Extracts of Uvaria Afzelli Scott Elliot and Tetracera Alnifolia Willd

    No full text
    Tuberculosis is a global burden with one –third of the world’s population infected with the pathogen Mycobacterium tuberculosis and an annual 2 million deaths from the disease. This high incidence of infection and the increased rate of resistant strains of the organism (MDR- and XDR- TB) have called for an urgent need to develop new anti-tuberculosis drugs from plants. The crude extract of Uvaria afzelli Scott Elliot (Annonaceae) root bark, and leaves and root bark of Tetracera alnifolia Willd. (Dilleniaceae) were investigated for anti-Mycobacterium tuberculosis activity using the MABA assay method. Anti- Mtb activity was determined against Mtb H37RvATCC 27294 at concentrations of 100- 0.390μg/mL. The hexane and chloroform extracts of the root bark of Tetracera alnifolia and the chloroform extract of Uvaria afzelli had anti- Mtb activity with MIC <100 μg/mL. Phytochemical screening for secondary metabolites revealed the presence of tannins, triterpenoid saponins, cardiac glycoside and alkaloids. The anti- Mtb activity demonstrated by the crude extracts is attributed to the presence of tannins and other secondary metabolites which are known to have strong antimicrobial activity. The results therefore support the local use of Uvaria afzelli and Tetracera alnifolia in the treatment of cough associated with tuberculosis and other microbial infections of the respiratory tract and suggest that these plants may be of therapeutic importance in the treatment of tuberculosis
    corecore