23 research outputs found

    Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies

    Get PDF
    The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than −8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of −10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (−10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski’s rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.Fil: Murali, Mahadevamurthy. University Of Mysore; IndiaFil: Gowtham, Hittanahallikoppal Gajendramurthy. Nrupathunga University; IndiaFil: Shilpa, Natarajamurthy. University Of Mysore; IndiaFil: Krishnappa, Hemanth Kumar Naguvanahalli. University Of Mysore; IndiaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Jain, Anisha S.. University Of Mysore; IndiaFil: Shati, Ali A.. King Khalid University; Arabia SauditaFil: Alfaifi, Mohammad Y.. Vacsera Holding Company; EgiptoFil: Elbehairi, Serag Eldin I.. Jss Academy Of Higher Education And Research; IndiaFil: Achar, Raghu Ram. Pirogov Russian National Research Medical University; RusiaFil: Silina, Ekaterina. Universitat de Les Illesbalears; EspañaFil: Stupin, Victor. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Ortega Castro, Joaquín. Jss Academy Of Higher Education And Research; IndiaFil: Frau, Juan. Universitat de Les Illesbalears; EspañaFil: Flores Holguín, Norma. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Amruthesh, Kestur Nagaraj. University Of Mysore; IndiaFil: Shivamallu, Chandan. Jss Academy Of Higher Education And Research; IndiaFil: Kollur, Shiva Prasad. University Of Mysore; IndiaFil: Glossman Mitnik, Daniel. Centro de Investigaciónen Materiales Avanzados; Méxic

    Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants

    Get PDF
    Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy

    農家代間的孝道責任期待:不同性別、世代之分析

    Get PDF
    This is the first report of the seed-borne nature of root and collar rot disease caused by Rhizoctonia solani in sunflower from India. The disease incidence has increased from 17% in 2006 to 21% in 2008. Consequently, disease monitoring and management measures need to be taken

    EFFECT OF FEED QUANTUM DURING FIFTH AGE SILKWORM, BOMBYX MORI L. ON REELING PARAMETERS

    No full text
    The effect of differentfeed quantum (18 to 32 feeds) during 5th instar of PMX NB4D2 and NB4D2x NB7 was studied. The larvae have been starved after 16 feeds (4th day) during 5th instar are unable to spin cocoons. The larvae starved after 18 feed have spun lighter cocoons. The quality of the cocoons were inferior upto 24 feeding level and the quality of silk was superior in 26 to 28 feeding level. The present study indicates that 26 to 28 feed level yield better reeling characters

    Reeling and fibre quality of commercial silkworm hybrid (PM × NB4D2) in relation to number of feeds and seasons

    No full text
    201-204<span style="font-size:11.0pt;line-height:115%; font-family:" calibri","sans-serif";mso-ascii-theme-font:minor-latin;mso-fareast-font-family:="" "times="" new="" roman";mso-fareast-theme-font:minor-fareast;mso-hansi-theme-font:="" minor-latin;mso-bidi-font-family:calibri;mso-bidi-theme-font:minor-latin;="" mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa"="">Reeling and fibre quality of commercial silkworm hybrid, PM × NB4D2, have been analyzed in relation to number of feeds and seasons. The results indicate positive correlation of reeling and fibre quality with number of feeds. 26 and 28 feeds result in better reeling and fibre characteristics such as reelability, evenness neatness and cleanness. The renditta is more over 30 and 32 feeds but the difference in renditta is not statistically significant. Hence, 26 and 28 feeds are better for harvesting reeling cocoons of PM × NB4D2.</span

    Evaluation and studies on the structural impact of 3-Aryl-5-(4-Methoxyphenyl)-4,5-Dihydroisoxazole-4-Carbonitriles on their biological activities

    No full text
    In present study, a series of isoxazole derivatives was synthesized and evaluated for antibacterial and antifungal activities by disc diffusion method using different bacterial and fungal strains. Some compounds of the series exhibited promising antibacterial and antifungal activity compared to standard drugs. The minimum inhibitory concentration (MIC’s) was determined against each organism. The compounds were tested for their antioxidant activity and reducing power ability. Free radicals play an important role in various pathological and xenotoxic effects so antioxidant may have protective role in these pathological conditions. Based on the results of an antimicrobial, anti-oxidant study, the effect of substitution on the activity and possible structure activity relationship of the compounds for their antioxidant activity is presente

    <i>In Silico</i> Computational Studies of Bioactive Secondary Metabolites from <i>Wedelia trilobata</i> against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance

    No full text
    In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from −5.3 kcal/mol to −10.1 kcal/mol. However, the lowest binding energy (−10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (−8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials

    In Silico Computational Studies of Bioactive Secondary Metabolites from Wedelia trilobata against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance

    No full text
    In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from &minus;5.3 kcal/mol to &minus;10.1 kcal/mol. However, the lowest binding energy (&minus;10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (&minus;8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials

    Integrated approach for studying bioactive compounds from Cladosporium spp. against estrogen receptor alpha as breast cancer drug target

    No full text
    Abstract Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of − 10.5 kcal/mol and − 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17 \upbeta β -Estradiol: − 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD 50_{50} 50 value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment
    corecore