26 research outputs found

    The Future Role of Strategic Landpower

    Get PDF
    Recent Russian aggression in Ukraine has reenergized military strategists and senior leaders to evaluate the role of strategic Landpower. American leadership in the European theater has mobilized allies and partners to reconsider force postures for responding to possible aggression against NATO members. Although Russian revisionist activity remains a threat in Europe, the challenges in the Pacific for strategic Landpower must also be considered. At the same time, the homeland, the Arctic, climate change, and the results of new and emerging technology also challenge the application of strategic Landpower. This publication serves as part of an enduring effort to evaluate strategic Landpower’s role, authorities, and resources for accomplishing the national strategic goals the Joint Force may face in the next conflict. This study considers multinational partners, allies, and senior leaders that can contribute to overcoming these enduring challenges. The insights derived from this study, which can be applied to both the European and Indo-Pacific theaters, should help leaders to consider these challenges, which may last a generation. Deterrence demands credible strategic response options integrated across warfighting functions. This valuable edition will continue the dialogue about addressing these issues as well as other emerging ones.https://press.armywarcollege.edu/monographs/1959/thumbnail.jp

    Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Ad26.CoV2.S Vaccination in People Living With Human Immunodeficiency Virus (HIV)

    Get PDF
    BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe Covid-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2 infected unvaccinated participants. METHODS: We enrolled participants who vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in health care workers (HCW). PLWH in this group had well controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Majority of Ad26.CoV2.S vaccinated HCW were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared to the infected only group and 26-fold higher relative to the vaccinated only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2 infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of non-responders, with the highest frequency of non-responders in people with HIV viremia. Vaccinated only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2 infected and non-vaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals

    Clinical characteristics and initial management of patients with tuberculous pericarditis in the HIV era: the Investigation of the Management of Pericarditis in Africa (IMPI Africa) registry

    Get PDF
    BACKGROUND: The incidence of tuberculous pericarditis has increased in Africa as a result of the human immunodeficiency virus (HIV) epidemic. However, the effect of HIV co-infection on clinical features and prognosis in tuberculous pericarditis is not well characterised. We have used baseline data of the Investigation of the Management of Pericarditis in Africa (IMPI Africa) registry to assess the impact of HIV co-infection on clinical presentation, diagnostic evaluation, and treatment of patients with suspected tuberculous pericarditis in sub-Saharan Africa. METHODS: Consecutive adult patients in 15 hospitals in three countries in sub-Saharan Africa were recruited on commencement of treatment for tuberculous pericarditis, following informed consent. We recorded demographic, clinical, diagnostic and therapeutic information at baseline, and have used the chi-square test and analysis of variance to assess probabilities of significant differences (in these variables) between groups defined by HIV status. RESULTS: A total of 185 patients were enrolled from 01 March 2004 to 31 October 2004, 147 (79.5%) of whom had effusive, 28 (15.1%) effusive-constrictive, and 10 (5.4%) constrictive or acute dry pericarditis. Seventy-four (40%) had clinical features of HIV infection. Patients with clinical HIV disease were more likely to present with dyspnoea (odds ratio [OR] 3.2, 95% confidence interval [CI] 1.4 to 7.4, P = 0.005) and electrocardiographic features of myopericarditis (OR 2.8, 95% CI 1.1 to 6.9, P = 0.03). In addition to electrocardiographic features of myopericarditis, a positive HIV serological status was associated with greater cardiomegaly (OR 3.89, 95% CI 1.34 to 11.32, P = 0.01) and haemodynamic instability (OR 9.68, 95% CI 2.09 to 44.80, P = 0.0008). However, stage of pericardial disease at diagnosis and use of diagnostic tests were not related to clinical HIV status. Similar results were obtained for serological HIV status. Most patients were treated on clinical grounds, with microbiological evidence of tuberculosis obtained in only 13 (7.0%) patients. Adjunctive corticosteroids were used in 109 (58.9%) patients, with patients having clinical HIV disease less likely to be put on them (OR 0.37, 95% CI 0.20 to 0.68). Seven patients were on antiretroviral drugs. CONCLUSION: Patients with suspected tuberculous pericarditis and HIV infection in Africa have greater evidence of myopericarditis, dyspnoea, and haemodynamic instability. These findings, if confirmed in other studies, may suggest more intensive management of the cardiac disease is warranted in patients with HIV-associated pericardial disease

    Omicron infection enhances Delta antibody immunity in vaccinated persons

    Get PDF
    The extent to which Omicron infection(1–9), with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3–9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19–27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement

    Association of predicted 10 years cardiovascular mortality risk with duration of HIV infection and antiretroviral therapy among HIV-infected individuals in Durban, South Africa

    Get PDF
    Background: South Africa has the largest population of human immunodeficiency virus (HIV) infected patients on antiretroviral therapy (ART) realising the benefits of increased life expectancy. However, this population may be susceptible to cardiovascular disease (CVD) development, due to the chronic consequences of a lifestyle-related combination of risk factors, HIV infection and ART. We predicted a 10-year cardiovascular mortality risk in an HIV-infected population on long-term ART, based on their observed metabolic risk factor profile. Methods: We extracted data from hospital medical charts for 384 randomly selected HIV-infected patients aged ≥ 30 years. We defined metabolic syndrome (MetS) subcomponents using the International Diabetes Federation definition. A validated non-laboratory-based model for predicting a 10-year CVD mortality risk was applied and categorised into five levels, with the thresholds ranging from very low-risk ( 30%). Results: Among the 384 patients, with a mean (± standard deviation) age of 42.90 ± 8.20 years, the proportion of patients that were overweight/obese was 53.3%, where 50.9% had low high-density lipoprotein (HDL) cholesterol and 21 (17.5%) had metabolic syndrome. A total of 144 patients with complete data allowed a definitive prediction of a 10-year CVD mortality risk. 52% (95% CI 44-60) of the patients were stratified to very low risk ( 30%) of 10-year CVD mortality. The CVD risk grows with increasing age (years), 57.82 ± 6.27 among very high risk and 37.52 ± 4.50; p < 0.001 in very low risk patients. Adjusting for age and analysing CVD risk mortality as a continuous risk score, increasing duration of HIV infection (p = 0.002) and ART (p = 0.007) were significantly associated with increased predicted 10 year CVD mortality risk. However, there was no association between these factors and categorised CVD mortality risk as per recommended scoring thresholds. Conclusions: Approximately 1 in 10 HIV-infected patients is at very high risk of predicted 10-year CVD mortality in our study population. Like uninfected individuals, our study found increased age as a major predictor of 10-year mortality risk and high prevalence of metabolic syndrome. Additional CVD mortality risk due to the duration of HIV infection and ART was seen in our population, further studies in larger and more representative study samples are encouraged. It recommends an urgent need for early planning, prevention and management of metabolic risk factors in HIV populations, at the point of ART initiation

    Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Ad26.CoV2.S Vaccination in People Living With Human Immunodeficiency Virus (HIV).

    Get PDF
    BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals

    Mortality in patients treated for tuberculous pericarditis in sub-Saharan Africa

    Get PDF
    Objective: To determine the mortality rate and its predictors in patients with a presumptive diagnosis of tuberculous pericarditis in sub-Saharan Africa. Design: Between 1 March 2004 and 31 October 2004, we enrolled 185 consecutive patients with presumed tuberculous pericarditis from 15 referral hospitals in Cameroon, Nigeria, and South Africa, and observed them during the 6-month course of antituberculosis treatment for the major outcome of mortality. This was an observational study, with the diagnosis and management of each patient left at the discretion of the attending physician. Using Cox regression, we have assessed the effect of clinical and therapeutic characteristics (recorded at baseline) on mortality during follow-up. Results: We obtained the vital status of 174 (94%) patients (median age 33; range 14-87 years). The overall mortality rate was 26%. Mortality was higher in patients who had clinical features of HIV infection than in those who did not (40% versus 17%, P=0.001). Independent predictors of death during follow-up were: (1) a proven non-tuberculosis final diagnosis (hazard ratio [HR] 5.35, 95% confidence interval 1.76 to 16.25), (2) the presence of clinical signs of HIV infection (HR 2.28, 1.14-4.56), (3) co-existent pulmonary tuberculosis (HR 2.33, 1.20-4.54), and (4) older age (HR 1.02, 1.01-1.05). There was also a trend towards an increase in death rate in patients with haemodynamic instability (HR 1.80, 0.90-3.58) and a decrease in those who underwent pericardiocentesis (HR 0.34, 0.10-1.19). Conclusion: A presumptive diagnosis of tuberculous pericarditis is associated with a high mortality in sub-Saharan Africans. Attention to rapid aetiological diagnosis of pericardial effusion and treatment of concomitant HIV infection may reduce the high mortality associated with the disease
    corecore