11,934 research outputs found

    The Curious Conundrum Regarding Sulfur Abundances In Planetary Nebulae

    Get PDF
    Sulfur abundances derived from optical emission line measurements and ionization correction factors in planetary nebulae are systematically lower than expected for the objects' metallicities. We have carefully considered a large range of explanations for this "sulfur anomaly", including: (1) correlations between the size of the sulfur deficit and numerous nebular and central star properties; (2) ionization correction factors which under-correct for unobserved ions; (3) effects of dielectronic recombination on the sulfur ionization balance; (4) sequestering of S into dust and/or molecules; and (5) excessive destruction of S or production of O by AGB stars. It appears that all but the second scenario can be ruled out. However, we find evidence that the sulfur deficit is generally reduced but not eliminated when S^+3 abundances determined directly from IR measurements are used in place of the customary sulfur ionization correction factor. We tentatively conclude that the sulfur anomaly is caused by the inability of commonly used ICFs to properly correct for populations of ionization stages higher than S^+2.Comment: 40 pages, 14 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    Taming hazardous chemistry in flow: The continuous processing of diazo and diazonium compounds

    Get PDF
    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed

    Thermal emission spectroscopy of the middle atmosphere

    Get PDF
    The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is a powerful tool in the verification and improvement of photochemical modeling

    Prelude to the Anthropocene: Two new North American Land Mammal Ages (NALMAs)

    Get PDF
    Human impacts have left and are leaving distinctive imprints in the geological record. Here we show that in North America, the human-caused changes evident in the mammalian fossil record since c. 14,000 years ago are as pronounced as earlier faunal changes that subdivide Cenozoic epochs into the North American Land Mammal Ages (NALMAs). Accordingly, we define two new North American Land Mammal Ages, the Santarosean and the Saintagustinean, which subdivide Holocene time and complete a biochronologic system that has proven extremely useful in dating terrestrial deposits and in revealing major features of faunal change through the past 66 million years. The new NALMAs highlight human-induced changes to the Earth system, and inform the debate on whether or not defining an Anthropocene epoch is justified, and if so, when it began

    The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, CH3D, GeH4, H2O) and the Jovian D/H isotropic ratio

    Get PDF
    The gas composition of the troposphere of Jupiter in the clearest regions of the North Equatorial Belt (NEB) was derived from the Voyager 1 IRIS data. The infrared spectrum for this homogeneous cloud free region was modeled to infer altitude profiles for NH3, PH3, GeH4 and H2O. The Profiles for NH3 and PH3 were found to be depleted in the upper troposphere but otherwise in agreement with their solar values at the 1 bar level. The mole fraction for CH3D was determined to be 3.5(+1.0 or -1.3) x 10 to the minus 7th power. The GeH4 mole fraction of 7+ or -2 x 10 to the minus 10th power at the 2 to 3 bar level is a factor of 10 lower than the solar value. The H2O mole fraction is approximately 1 x 0.00001 at the 2.5 bar level and is increasing to approximately 3 x 0.00001 at 4 bars where it is a factor of 30 lower than solar. Using IRIS infrared values for the mole fractions of CH3D and CH4 a value of D/H = 3.6(+1.0 or -1.4)x 0.00001 is derived. Assuming this Jovian D/H ratio is representative of the protosolar nebula, and correcting for chemical galactic evolution, yields a value of 5.5 - 9.0 x 0.00001 for the primordial D/H ratio and an upper limit of 1.8 to 2.4 x 10 to the minus 31st power cu cm for the present day baryon density

    Convenient and robust one-pot synthesis of symmetrical and unsymmetrical benzyl thioethers from benzyl halides using thiourea

    Get PDF
    A series of symmetrical and unsymmetrical benzyl thioethers have been synthesised using a one-pot reaction from benzyl halides and thiourea. This procedure avoids the isolation or handling of malodorous thiols and generates high yields of benzyl thioethers in excellent purity

    Physically Meaningful Uncertainty Quantification in Probabilistic Wind Turbine Power Curve Models as a Damage Sensitive Feature

    Full text link
    A wind turbines' power curve is easily accessible damage sensitive data, and as such is a key part of structural health monitoring in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful - they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian Processes in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the Gaussian Process in relation to the warping function. The second model - an approximated Gaussian Process with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility
    • …
    corecore