1,056 research outputs found

    Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the Parkinsonian rat

    Get PDF
    Much of the motor impairment associated with Parkinson’s disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in Parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered Parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (Non-Parametric Directionality, NPD). Additionally, we used a ‘conditioned’ version of the NPD analysis which reveals the dependence of the correlation between two signals upon a third reference signal. We find evidence of the dopamine dependency of both low beta (14-20 Hz) and high beta/low gamma (20-40 Hz) directed interactions within the network. Notably, 6-OHDA lesions were associated with enhancement of the cortical “hyper-direct” connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Further, we provide evidence that high beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization when compared to low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in Parkinsonism

    Summary: Working Group on QCD and Strong Interactions

    Full text link
    In this summary of the considerations of the QCD working group at Snowmass 2001, the roles of quantum chromodynamics in the Standard Model and in the search for new physics are reviewed, with empahsis on frontier areas in the field. We discuss the importance of, and prospects for, precision QCD in perturbative and lattice calculations. We describe new ideas in the analysis of parton distribution functions and jet structure, and review progress in small-xx and in polarization.Comment: Snowmass 2001. Revtex4, 34 pages, 4 figures, revised to include additional references on jets and lattice QC

    A Kernel to Exploit Informative Missingness in Multivariate Time Series from EHRs

    Get PDF
    A large fraction of the electronic health records (EHRs) consists of clinical measurements collected over time, such as lab tests and vital signs, which provide important information about a patient's health status. These sequences of clinical measurements are naturally represented as time series, characterized by multiple variables and large amounts of missing data, which complicate the analysis. In this work, we propose a novel kernel which is capable of exploiting both the information from the observed values as well the information hidden in the missing patterns in multivariate time series (MTS) originating e.g. from EHRs. The kernel, called TCKIM_{IM}, is designed using an ensemble learning strategy in which the base models are novel mixed mode Bayesian mixture models which can effectively exploit informative missingness without having to resort to imputation methods. Moreover, the ensemble approach ensures robustness to hyperparameters and therefore TCKIM_{IM} is particularly well suited if there is a lack of labels - a known challenge in medical applications. Experiments on three real-world clinical datasets demonstrate the effectiveness of the proposed kernel.Comment: 2020 International Workshop on Health Intelligence, AAAI-20. arXiv admin note: text overlap with arXiv:1907.0525

    Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut

    Get PDF
    In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference
    corecore