48 research outputs found

    The Fasciola hepatica thioredoxin: High resolution structure reveals two oxidation states.

    Get PDF
    addresses: Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.types: Comparative Study; Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2008 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Molecular and Biochemical Parasitology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Molecular and Biochemical Parasitology, 2008, Vol. 161, Issue 1, pp. 44 – 48 DOI: 10.1016/j.molbiopara.2008.06.009The Fasciola hepatica thioredoxin protein structure has been determined to 1.45A resolution. This is the first example of a single crystal structure to show the active site cysteine residues in both the reduced and disulfide oxidised form. Consistent with this observation the process of oxidation appears to require very little rearrangement of the surrounding protein structure. The F. hepatica thioredoxin structure has been compared to other thioredoxin protein structures already known and is found to be highly conserved. The F. hepatica protein is most similar to that of the thioredoxin from its human and animal hosts but it resembles other parasitic thioredoxins with regard to having no additional cysteine residues and is therefore not regulated by transient disulfide bond formation as proposed for thioredoxins from higher eukaryotic species

    Senecavirus A 3C Protease Mediates Host Cell Apoptosis Late in Infection

    Get PDF
    Senecavirus A (SVA), an oncolytic picornavirus used for cancer treatment in humans, has recently emerged as a vesicular disease (VD)-causing agent in swine worldwide. Notably, SVA-induced VD is indistinguishable from foot-and-mouth disease (FMD) and other high-consequence VDs of pigs. Here we investigated the role of apoptosis on infection and replication of SVA. Given the critical role of the nuclear factor-kappa B (NF-κB) signaling pathway on modulation of cell death, we first assessed activation of NF-κB during SVA infection. Results here show that while early during infection SVA induces activation of NF-κB, as evidenced by nuclear translocation of NF-κB-p65 and NF-κB-mediated transcription, late in infection a cleaved product corresponding to the C-terminus of NF-κB-p65 is detected in infected cells, resulting in lower NF-κB transcriptional activity. Additionally, we assessed the potential role of SVA 3C protease (3Cpro) in SVA-induced host-cell apoptosis and cleavage of NF-κB-p65. Transient expression of SVA 3Cpro was associated with cleavage of NF-κB-p65 and Poly (ADP-ribose) polymerase (PARP), suggesting its involvement in virus-induced apoptosis. Most importantly, we showed that while cleavage of NF-κB-p65 is secondary to caspase activation, the proteolytic activity of SVA 3Cpro is essential for induction of apoptosis. Experiments using the pan-caspase inhibitor Z-VAD-FMK confirmed the relevance of late apoptosis for SVA infection, indicating that SVA induces apoptosis, presumably, as a mechanism to facilitate virus release and/or spread from infected cells. Together, these results suggest an important role of apoptosis for SVA infection biology

    Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites

    Get PDF
    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging

    Exploring molecular variation in Schistosoma japonicum in China

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Paesaggio Urbano

    No full text

    Paesaggio Urbano

    No full text

    Human albumin in the management of complications of liver cirrhosis.

    No full text
    Th e use of human albumin in the setting of liver cirrhosis is supported by evidence arising from prospective randomized trials and meta-analyses. Albumin administration is, therefore widely accepted and recommended by current international guidelines for the prevention of PPCD and acute renal failure in patients with SBP, and the treatment of HRS as an adjunct to vasoconstrictors. All these complications share the common patho physiological background of reduced eff ective volemia, mainly because of peripheral arterial vasodilation, and the rationale underlying the use of albumin is related to its activity as a plasma expander. However, it is likely that the benefi cial eff ects of albumin are also linked to its non-oncotic properties, including binding capacity, antioxidant activity, and eff ects on capillary integrity. Th ese eff ects represent the main fi elds of current and future research, from which will likely arise further and more appropriate indications for albumin administration in patients with liver disease
    corecore