28 research outputs found

    Effects of Migration Schedules on Physiological Condition and Timing of Breeding in Wood Thrush (Hylocichla mustelina)

    Get PDF
    I examine for the first time whether individual migration strategy affects physiological condition upon arrival and how arrival condition influences reproductive effort in a migratory songbird. Migration duration was predicted by departure date from the wintering grounds, arrival date to the northern Gulf coast, and arrival date to breeding grounds using geolocators, but not by sex (n=15 males, 6 females). There was a significant negative relationship between the number of days spent on migration and arrival mass index in males (p=0.027), with B-OH concentrations (p=0.013), and a positive correlation with baseline CORT (p=0.0026). High baseline CORT was significantly correlated with later mate acquisition dates for males (p<0.001). Arrival date predicted first egg date (p=0.012). Males had significantly higher adrenocortical responses and differences between adrenocortical responses and baseline CORT than females. My study suggests that migration behaviour could have carry-over effects of poor stopover habitat on arrival condition and reproductive success

    A review of Bayesian belief network models as decision-support tools for wetland conservation : are water birds potential umbrella taxa?

    Get PDF
    10 pagesCreative approaches to identifying umbrella species hold promise for devising effective surrogates of ecological communities or ecosystems. However, mechanistic niche models that predict range or habitat overlap among species may yet lack development. We reviewed literature on taxon-centered Bayesian belief network (BBN) models to explore a novel approach to identify umbrella taxa identifying taxonomic groups that share the largest proportion of habitat requirements (i.e., states of important habitat variables) with other wetland-dependent taxa. We reviewed and compiled published literature to provide a comprehensive and reproducible account of the current understanding of habitat requirements for freshwater, wetland-dependent taxa using BBNs. We found that wetland birds had the highest degree of shared habitat requirements with other taxa, and consequently may be suitable umbrella taxa in freshwater wetlands. Comparing habitat requirements using a BBN approach to build species distribution models, this review also identified taxa that may not benefit from conservation actions targeted at umbrella taxa by identifying taxa with unique habitat requirements not shared with umbrellas. Using a standard node set that accurately and comprehensively represents the ecosystem in question, BBNs could be designed to improve identification of umbrella taxa. In wetlands, expert knowledge about hydrology, geomorphology and soils could add important information regarding physical landscape characteristics relevant to species. Thus, a systems-oriented framework may improve overarching inferences from BBNs and subsequent utility to conservation planning and management.Postprin

    Follow the Rain? Environmental Drivers of Tyrannus Migration across the New World

    Get PDF
    Predictable seasonal changes in resources are thought to drive the timing of annual animal migrations; however, we currently understand little about which environmental cues or resources are tracked by different migratory bird species across the planet. Understanding which environmental cues or resources birds track in multiple migratory systems is a prerequisite to developing generalizable conservation plans for migratory birds in a changing global environment. Within the New World, climatic differences experienced by Nearctic–Neotropical migratory (NNM; i.e. breed in North America and spend the nonbreeding period in the Neotropics) and Neotropical austral migratory (NAM; i.e. breed and spend the nonbreeding period wholly within South America) bird species suggest that their migratory strategies may be shaped by unique selective pressures. We used data gathered from individuals fitted with light-level geolocators to build species distribution models (SDMs) to test which environmental factors drive the migratory strategies of species in each system. To do so, we evaluated whether temperature, precipitation, and primary productivity (NDVI) were related to the seasonal distributions of an NNM (Eastern Kingbird [Tyrannus tyrannus]) and NAM species (Fork-tailed Flycatcher [T. savana]). Both Eastern Kingbird and Fork-tailed Flycatcher locations were positively correlated with high precipitation during their nonbreeding seasons. Eastern Kingbird locations were positively correlated with both NDVI and temperature during their breeding season and both pre- and post-breeding migrations. Fork-tailed Flycatcher locations were positively correlated with both temperature and precipitation during both migrations, but only temperature during the breeding season. The value of extending the application of geolocator data, such as in SDMs, is underscored by the finding that precipitation was such an important predictor of the nonbreeding distributions of both types of migrants, as it remains unclear how global climate change will affect wet–dry cycles in the tropics

    Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7(7): e40688

    Get PDF
    Abstract Tracking repeat migratory journeys of individual animals is required to assess phenotypic plasticity of individual migration behaviour in space and time. We used light-level geolocators to track the long-distance journeys of migratory songbirds (wood thrush, Hylocichla mustelina), and, for the first time, repeat journeys of individuals. We compare between-and withinindividual variation in migration to examine flexibility of timing and route in spring and autumn. Date of departure from wintering sites in Central America, along with sex and age factors, explained most of the variation (71%) in arrival date at North American breeding sites. Spring migration showed high within-individual repeatability in timing, but not in route. In particular, spring departure dates of individuals were highly repeatable, with a mean difference between years of just 3 days. Autumn migration timing and routes were not repeatable. Our results provide novel evidence of low phenotypic plasticity in timing of spring migration, which may limit the ability of individuals to adjust migration schedules in response to climate change

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    RNA interference approaches for treatment of HIV-1 infection

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Evidence of a trophic niche shift in an omnivorous migratory bird in South America: A comparison of stable isotope signatures in feathers between migratory and sedentary subspecies of Tyrannus savana

    No full text
    Understanding how diet and life history strategies interact is important for exploring constraints of available nutrition on energetically expensive life history events in wild animals (i.e., reproduction, annual migration, or molt). Previous research on migratory birds breeding in the Northern Hemisphere has demonstrated trophic niche shifts from invertebrates to fruit in order to fuel spring migration. We examined whether a trophic niche switch occurred in a Neotropical austral migrant bird, Tyrannus savana savana prior to spring migration by measuring stable nitrogen isotopes in feathers. We found that the austral migrant T. s. savana did appear to shift in diet from a higher to lower trophic level (consistent in pattern with a shift from a higher to lower ratio of invertebrates to fruit) but the shift occurred earlier than expected if it was preparation for migration. A sympatric sedentary subspecies (T. s. monachus) appeared to forage only at the lower trophic level during their annual molt and that show no evidence of a trophic niche shift. The timing of the trophic niche shift leads us to conclude that a higher trophic level diet early in molt is not related to preparation for spring migration in this species but suggest that it may be related to seasonal changes in food availability as the wet season concludes. A remaining challenge for understanding the ecological consequences of trophic niche shifts is to find ways to empirically measure trade-offs between different diets across energetically expensive life history activities and compare these between taxa with differing life history strategies

    Tanager Climate Change Project

    No full text
    corecore