21 research outputs found
Observational constraints on the survival of pristine stars
There is a longstanding discussion about whether low mass stars can form from
pristine gas in the early Universe. A particular point of interest is whether
we can find surviving pristine stars from the first generation in our local
neighbourhood. We present here a simple analytical estimate that puts tighter
constraints on the existence of such stars. In the conventional picture, should
these stars have formed in significant numbers and have preserved their
pristine chemical composition until today, we should have found them already.
With the presented method most current predictions for survivor counts larger
than zero can be ruled out.Comment: 5 pages, 2 figures, accepted for publication in MNRA
Predicting the locations of possible long-lived low-mass first stars: Importance of satellite dwarf galaxies
The search for metal-free stars has so far been unsuccessful, proving that if
there are surviving stars from the first generation, they are rare, they have
been polluted, or we have been looking in the wrong place. To predict the
likely location of Population~III (Pop~III) survivors, we semi-analytically
model early star formation in progenitors of Milky Way-like galaxies and their
environments. We base our model on merger trees from the high-resolution dark
matter only simulation suite \textit{Caterpillar}. Radiative and chemical
feedback are taken into account self-consistently, based on the spatial
distribution of the haloes. Our results are consistent with the non-detection
of Pop III survivors in the Milky Way today. We find that possible surviving
Population III stars are more common in Milky Way satellites than in the main
Galaxy. In particular, low mass Milky Way satellites contain a much larger
fraction of Pop~III stars than the Milky Way. Such nearby, low mass Milky Way
satellites are promising targets for future attempts to find Pop~III survivors,
especially for high-resolution, high signal-to-noise spectroscopic
observations. We provide the probabilities for finding a Pop~III survivor in
the red giant branch phase for all known Milky Way satellites to guide future
observations.Comment: 17 pages, 12 figures, 1 table, submitted to MNRA
Descendants of the first stars: the distinct chemical signature of second generation stars
Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the
properties of their progenitors by comparing their chemical composition to the
metal yields of the first supernovae. This method is most powerful when applied
to mono-enriched stars, i.e. stars that formed from gas that was enriched by
only one previous supernova. We present a novel diagnostic to identify this
subclass of EMP stars. We model the first generations of star formation
semi-analytically, based on dark matter halo merger trees that yield MW-like
halos at the present day. Radiative and chemical feedback are included
self-consistently and we trace all elements up to zinc. Mono-enriched stars
account for only of second generation stars in our fiducial model
and we provide an analytical formula for this probability. We also present a
novel analytical diagnostic to identify mono-enriched stars, based on the metal
yields of the first supernovae. This new diagnostic allows us to derive our
main results independently from the specific assumptions made regarding Pop III
star formation, and we apply it to a set of observed EMP stars to demonstrate
its strengths and limitations. Our results may provide selection criteria for
current and future surveys and therefore contribute to a deeper understanding
of EMP stars and their progenitors.Comment: 18 pages, 20 figures, published in MNRA
Origin of metals in old Milky Way halo stars based on GALAH and Gaia
© 2021 The Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab1982Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected old main-sequence turn-off stars (ages Gyrs) with kinematics compatible with the Milky Way stellar halo population in the Solar neighborhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop~III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars ("OHS"). We find that the observed abundances in the OHS with [Fe/H] are best explained by contributions from both CCSNe and SN~Ia, where the fraction of SN~Ia among all the metal-enriching SNe is up to 10-20 % for stars with high [Mg/Fe] ratios and up to 20-27 % for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H], 50-60% of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.Peer reviewedFinal Published versio
A Minimum Dilution Scenario for Supernovae and Consequences for Extremely Metal-Poor Stars
© 2020 The Author(s) 2020 Published by Oxford University Press on behalf of the Royal Astronomical Society.To date no metal-free stars have been identified by direct observations. The most common method of constraining their properties is searching the spectra of the most metal-poor stars for the chemical elements created in the first stars and their supernova (SN). In this approach, modelled SN yields are compared to the observed abundance patterns in extremely metal-poor stars. The method typically only uses the abundance ratios, i.e. the yields are diluted to the observed level. Following the usual assumption of spherical symmetry we compute a simple lower limit of the mass an SN can mix with and find that it is consistent with all published simulations of early chemical enrichment in the interstellar medium. For three different cases, we demonstrate that this dilution limit can change the conclusions from the abundance fitting. There is a large discrepancy between the dilution found in simulations of SN explosions in minihaloes and the dilution assumed in many abundance fits. Limiting the dilution can significantly alter the likelihood of which supernovae are possible progenitors of observed CEMP-no stars. In particular, some of the faint, very low yield SNe, which have been suggested as models for the abundance pattern of SMSS0313-6708, cannot explain the measured metal abundances, as their predicted metal yields are too small by two orders of magnitude. Altogether, the new dilution model presented here emphasizes the need to better understand the mixing and dilution behaviour of aspherical SNe.Peer reviewedFinal Accepted Versio
Gravitational waves from the remnants of the first stars
Gravitational waves (GWs) provide a revolutionary tool to investigate yet unobserved astrophysical objects. Especially the first stars, which are believed to be more massive than present-day stars, might be indirectly observable via the merger of their compact remnants. We develop a self-consistent, cosmologically representative, semi-analytical model to simulate the formation of the first stars. By extrapolating binary stellar-evolution models at 10 per cent solar metallicity to metal-free stars, we track the individual systems until the coalescence of the compact remnants. We estimate the contribution of primordial stars to the merger rate density and to the detection rate of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO). Owing to their higher masses, the remnants of primordial stars produce strong GW signals, even if their contribution in number is relatively small. We find a probability of greater than or similar to 1 per cent that the current detection GW150914 is of primordial origin. We estimate that aLIGO will detect roughly 1 primordial BH-BH merger per year for the final design sensitivity, although this rate depends sensitively on the primordial initial mass function (IMF). Turning this around, the detection of black hole mergers with a total binary mass of similar to 300 M-circle dot would enable us to constrain the primordial IMF