8 research outputs found

    Spatially aggregated clusters and scattered smaller loci of elevated malaria vector density and human infection prevalence in urban Dar es Salaam, Tanzania

    Get PDF
    Background Malaria transmission, primarily mediated by Anopheles gambiae, persists in Dar es Salaam (DSM) despite high coverage with bed nets, mosquito-proofed housing and larviciding. New or improved vector control strategies are required to eliminate malaria from DSM, but these will only succeed if they are delivered to the minority of locations where residual transmission actually persists. Hotspots of spatially clustered locations with elevated malaria infection prevalence or vector densities were, therefore, mapped across the city in an attempt to provide a basis for targeting supplementary interventions. Methods Two phases of a city-wide population-weighted random sample of cross-sectional household surveys of malaria infections were complemented by two matching phases of geographically overlapping, high-resolution, longitudinal vector density surveys; spanning 2010–2013. Spatial autocorrelations were explored using Moran’s I and hotspots were detected using flexible spatial scan statistics. Results Seven hotspots of spatially clustered elevated vector density and eight of malaria infection prevalence were detected over both phases. Only a third of vectors were collected in hotspots in phase 1 (30 %) and phase 2 (33 %). Malaria prevalence hotspots accounted for only half of malaria infections detected in phase 1 (55 %) and phase 2 (47 %). Three quarters (76 % in phase 1 and 74 % in phase 2) of survey locations with detectable vector populations were outside of hotspots. Similarly, more than half of locations with higher infection prevalence (>10 %) occurred outside of hotspots (51 % in phase 1 and 54 % in phase 2). Vector proliferation hazard (exposure to An. gambiae) and malaria infection risk were only very loosely associated with each other (Odds ratio (OR) [95 % Confidence Interval (CI)] = 1.56 [0.89, 1.78], P = 0.52)). Conclusion Many small, scattered loci of local malaria transmission were haphazardly scattered across the city, so interventions targeting only currently identifiable spatially aggregated hotspots will have limited impact. Routine, spatially comprehensive, longitudinal entomological and parasitological surveillance systems, with sufficient sensitivity and spatial resolution to detect these scattered loci, are required to eliminate transmission from this typical African city. Intervention packages targeted to both loci and hotspots of transmission will need to suppress local vector proliferation, treat infected residents and provide vulnerable residents with supplementary protective measures against exposure

    Fine scale mapping of malaria infection clusters by using routinely collected health 1 facility data in urban Dar es Salaam, Tanzania

    Get PDF
    This study investigated whether passively collected routine health facility data can be used for mapping spatial heterogeneities in malaria transmission at the level of local government housing cluster administrative units in Dar es Salaam, Tanzania. From June 2012 to Jan 2013, residential locations of patients tested for malaria at a public health facility were traced based on their local leaders’ names and geo-referencing the point locations of these leaders’ houses. Geographic information systems (GIS) were used to visualise the spatial distribution of malaria infection rates. Spatial scan statistics were deployed to detect spatial clustering of high infection rates. Among 2,407 patients tested for malaria, 46.6% (1,121) could be traced to their 411 different residential housing clusters. One small spatially aggregated cluster of neighbourhoods with high prevalence was identified. While the home residence housing cluster leader was unambiguously identified for 73.8% (240/325) of malaria-positive patients, only 42.3% (881/2,082) of those with negative test results were successfully traced. It was concluded that recording simple points of reference during routine health facility visits can be used for mapping malaria infection burden on very fine geographic scales, potentially offering a feasible approach to rational geographic targeting of malaria control interventions. However, in order to tap the full potential of this approach, it would be necessary to optimise patient tracing success and eliminate biases by blinding personnel to test results

    Durability of Olyset campaign nets distributed between 2009 and 2011 in eight districts of Tanzania.

    Get PDF
    BACKGROUND: Long-lasting insecticidal nets (LLINs) are the first line choice for malaria vector control in sub-Saharan Africa, with most countries adopting universal coverage campaigns. However, there is only limited information on LLIN durability under user conditions. Therefore, this study aimed to assess the durability of Olyset(®) LLINs distributed during campaigns between 2009 and 2011 in Tanzania. METHODS: A retrospective field survey was conducted in eight districts in Tanzania mainland to assess the durability of Olyset campaign nets. Household questionnaires were used to assess attrition, i.e. net loss. All nets remaining in households were collected. A sub-sample of 198 Olyset campaign nets was examined for bio-efficacy against Anopheles gambiae s.s. mosquitoes, permethrin content and physical integrity following standard World Health Organization (WHO) methods. RESULTS: Of 6067 campaign nets reported to have been received between 2009 and 2011, 35% (2145 nets) were no longer present. Most of those nets had been discarded (84%) mainly because they were too torn (94%). Of the 198 sub-sampled Olyset LLINs, 61% were still in serviceable physical condition sufficient to provide personal protection while 39% were in unserviceable physical condition according to WHO proportionate Hole Index (pHI). More than 96% (116/120) of nets in serviceable condition passed WHO bioefficacy criteria while all nets in unserviceable condition passed WHO bioefficacy criteria. Overall mean permethrin content was 16.5 g/kg (95% CI 16.2-16.9) with 78% of the sub-sampled nets retaining recommended permethrin content regardless of their age or physical condition. Nets aged 4 years and above had a mean permethrin content of 14 g/kg (95% CI 12.0-16.0). The only statistically significant predictor of reduced physical net integrity was rats in the house. CONCLUSIONS: Two-to-four years after a mass campaign, only 39% of distributed nets remain both present and in serviceable physical condition, a functional survival considerably below WHO assumptions of 50% survival of a 'three-year' net. However, the majority of nets still retained substantial levels of permethrin and could still be bio-chemically useful against mosquitoes if their holes were repaired, adding evidence to the value of net care and repair campaigns

    Investigating mosquito net durability for malaria control in Tanzania - attrition, bioefficacy, chemistry, degradation and insecticide resistance (ABCDR): study protocol.

    Get PDF
    BACKGROUND: Long-Lasting Insecticidal Nets (LLINs) are one of the major malaria vector control tools, with most countries adopting free or subsidised universal coverage campaigns of populations at-risk from malaria. It is essential to understand LLIN durability so that public health policy makers can select the most cost effective nets that last for the longest time, and estimate the optimal timing of repeated distribution campaigns. However, there is limited knowledge from few countries of the durability of LLINs under user conditions. METHODS/DESIGN: This study investigates LLIN durability in eight districts of Tanzania, selected for their demographic, geographic and ecological representativeness of the country as a whole. We use a two-stage approach: First, LLINs from recent national net campaigns will be evaluated retrospectively in 3,420 households. Those households will receive one of three leading LLIN products at random (Olyset®, PermaNet®2.0 or Netprotect®) and will be followed up for three years in a prospective study to compare their performance under user conditions. LLIN durability will be evaluated by measuring Attrition (the rate at which nets are discarded by households), Bioefficacy (the insecticidal efficacy of the nets measured by knock-down and mortality of mosquitoes), Chemical content (g/kg of insecticide available in net fibres) and physical Degradation (size and location of holes). In addition, we will extend the current national mosquito insecticide Resistance monitoring program to additional districts and use these data sets to provide GIS maps for use in health surveillance and decision making by the National Malaria Control Program (NMCP). DISCUSSION: The data will be of importance to policy makers and vector control specialists both in Tanzania and the SSA region to inform best practice for the maintenance of high and cost-effective coverage and to maximise current health gains in malaria control

    The useful life of bednets for malaria control in Tanzania: Attrition, Bioefficacy, Chemistry, Durability and insecticide Resistance - Household survey 2016: ABCDR 2016 Prospective Year 3 (36 Months)

    No full text
    Data associated with a nationwide retrospective evaluation of Long Lasting Insecticidal Net (LLIN) distribution campaigns and double-blinded prospective evaluation of three LLIN products
    corecore