
Abstract
This study investigated whether passively collected routine

health facility data can be used for mapping spatial heterogeneities
in malaria transmission at the level of local government housing
cluster administrative units in Dar es Salaam, Tanzania. From June
2012 to January 2013, residential locations of patients tested for
malaria at a public health facility were traced based on their local
leaders’ names and geo-referencing the point locations of these
leaders’ houses. Geographic information systems (GIS) were used
to visualise the spatial distribution of malaria infection rates.
Spatial scan statistics was deployed to detect spatial clustering of
high infection rates. Among 2407 patients tested for malaria,
46.6% (1121) could be traced to their 411 different residential
housing clusters. One small spatially aggregated cluster of neigh-
bourhoods with high prevalence was identified. While the home
residence housing cluster leader was unambiguously identified for
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73.8% (240/325) of malaria-positive patients, only 42.3%
(881/2082) of those with negative test results were successfully
traced. It was concluded that recording simple points of reference
during routine health facility visits can be used for mapping malar-
ia infection burden on very fine geographic scales, potentially
offering a feasible approach to rational geographic targeting of
malaria control interventions. However, in order to tap the full
potential of this approach, it would be necessary to optimise
patient tracing success and eliminate biases by blinding personnel
to test results.

Introduction
In many endemic countries of sub-Saharan Africa

(D’Acremont et al., 2010; Gething et al., 2010b; Maharaj et al.,
2012; Murray et al., 2012; O’Meara et al., 2010; WHO, 2013),
including the United Republic of Tanzania (Bhattarai et al., 2007;
Mtove et al., 2011; WHO, 2013), malaria incidence and morbidity
rates have substantially decreased in recent years, following the
successful scale-up of available front-line malaria intervention
tools (Bhattarai et al., 2007; Ceesay et al., 2008; Steketee and
Campbell, 2010). These reductions of malaria transmission have
encouraged a paradigm shift from the goal of burden control to
pathogen elimination (Feachem et al., 2010; Kitua et al., 2011;
Moonen et al., 2010a; Steketee and Campbell, 2010).

Human malaria infection distributions are known to exhibit
spatial heterogeneities on very fine scales. They may even vary
between households within the same communities, particularly at
low-transmission intensities (Bousema et al., 2010b, 2012;
Gaudart et al., 2006; Mirghani et al., 2010; Woolhouse et al.,
1997). In areas where malaria transmission is low enough to enable
implementation of the pre-elimination phase (WHO, 2007, 2012),
information on the spatial distribution of remaining malaria infec-
tions is required to enable targeting of supplementary disease con-
trol interventions (Bejon et al., 2010; Bousema et al., 2010b, 2012;
Nourein et al., 2011; malERA Consultative Group on Monitoring,
2011; WHO, 2012). Spatially aggregated clusters of high infection
rates, often referred to as pockets of transmission (Tambo et al.,
2014; Zhou et al., 2013) or hotspots, have been identified through
a variety of survey methods (Bejon et al. 2010, 2014; Bousema et
al. 2010a, 2010b; Clark et al., 2008; Hardy et al., 2015). A hotspot
of malaria transmission may be defined as an area with a signifi-
cantly higher proportion of positive malaria test results compared
to its surrounding area (Bousema et al., 2010a).

Most of the standard measures for monitoring and mapping
malaria transmission that have been used by research projects and
by national monitoring and evaluation programmes have relied on
surveys of well-defined demographic and spatial samples of rele-
vant human populations (Bejon et al., 2010; Bousema et al.,
2010a, 2010b; Clark et al., 2008; Teuscher, 1992). The greatest
strength of population-weighted cross-sectional prevalence sur-
veys is the representative nature of such probability sampling
(Chanda et al., 2012; Moonen et al., 2010b; Roll Back Malaria,
2006; Rowe et al., 2009). However, national malaria indicator sur-
veys and other household survey approaches are not designed or
powered to determine local-level variation and are typically too
costly and laborious to apply with sufficient sampling intensity to
obtain spatial resolution finer than the district-level outside of
research settings with limited geographic scope (Bousema et al.,
2010b; WHO, 2012). The challenge remains to develop program-

matically affordable and scalable approaches that deliver high-res-
olution maps of transmission risk for targeting supplementary con-
trol efforts, thus contributing to establishing effective surveillance-
response systems (Tambo et al., 2014; Zhou et al., 2013), specifi-
cally in areas of low transmission where elimination may be feasi-
ble (Bejon et al., 2010, 2014; Bousema et al., 2010a, 2012;
Mueller et al., 2011).

Passively collected routine health facility data are widely used
to estimate the burden of malaria (Chanda et al., 2012; Gething et
al., 2010a; Lippeveld et al., 2000; WHO, 2012) and for risk map-
ping in resource-limited settings. A common feature of those risk-
mapping approaches, however, is the considerable effort put into
mapping the geographical coordinates of every participating
household individually (Bejon et al., 2014; Bisanzio et al., 2015;
Cohen et al., 2010, 2013; Ernst et al., 2006; Kazembe et al., 2006;
Sturrock et al., 2014; Yeshiwondim et al., 2009). Several studies
have shown that passive case detection at health facilities could
guide reactive case detection, whereby visits are made to the
respective residence of each positive case reported at a health facil-
ity to screen household members and neighbours (Branch et al.,
2005; Brooker et al., 2004; Cohen et al., 2013; Kreuels et al.,
2008; Maharaj et al., 2012; Pinchoff et al., 2015; Zanzibar Malaria
Control Programme, 2010). Furthermore, data collection at health
facilities during routine patient visits can allow the mapping of the
spatial distribution of malaria infection burden (Alemu et al.,
2013; de Oliveira et al., 2011; Kazembe, 2007; Wimberly et al.,
2012; Zacarias and Andersson, 2011) as well as a variety of other
diseases (Jennings et al., 2005; Lengeler et al., 1991; Mayala et al.,
2004; Tornheim et al., 2010), across patient catchment areas
(Oduro et al., 2011). 

In Dar es Salaam, health facility data have been used for
assessing the sensitivity and specificity of malaria diagnostic tools,
as well as the quality of case management and health worker per-
formance (Eriksen et al., 2007; Kahama-Maro et al., 2011; Nsimba
et al., 2002). However, routinely collected health facility data have
not yet been fully explored for mapping malaria infection burdens
across the city, or for planning targeted delivery of appropriate
control strategies, because patient records generally do not include
accurate residential addresses. This exploratory study assesses the
feasibility, cost, strengths and limitations of using anonymised rou-
tine health facility data, supplemented with the names of patients’
local government housing cluster leaders as geographic reference
points, to map their home residence locations, and the usefulness
of this approach for visualising the spatial distribution of malaria
prevalence in two adjacent wards of urban Dar es Salaam.

Materials and Methods

Study area
Dar es Salaam is located on the Indian Ocean coast of Tanzania

in East Africa (Figure 1) with a population of 4.4 million inhabi-
tants in 2012 (United Republic of Tanzania, 2013). The city is
characterised by highly heterogeneous land use, including industri-
al and commercial areas, planned residential areas and informal
settlements, as well as areas with urban agriculture (Dongus et al.,
2009). Dar es Salaam has a hot and humid tropical climate
throughout the year, with two rainy seasons: the long rains, which
usually fall between March and May, and the short rains, which

                                                                                                                                Article

                                                                              [Geospatial Health 2017; 12:494]                                                            [page 75]

gh-2017_1.qxp_Hrev_master  09/05/17  14:02  Pagina 75

Non
 co

mmerc
ial

 us
e o

nly



[page 76]                                                             [Geospatial Health 2017; 12:494]                                          

occur less predictably anytime between October and January.
Average annual rainfall is 1042 mm (DCP, 2004) and the average
temperature 25.9ºC. Malaria transmission in Dar es Salaam is
perennial but relatively low following scale-up of insecticidal net
coverage, house screening and larviciding, with a mean prevalence
of detectable infection among residents in all age groups of
approximately 10% (Msellemu et al., 2016) and an entomological
inoculation rate of less than one infectious bite per person per year
that both usually peak during and immediately after the main rainy
season (Geissbühler et al., 2007; Maheu-Giroux and Castro, 2013;
Namango, 2012).

Study design 
Dar es Salaam is divided into five administrative levels [city,

municipality, ward, neighbourhood and ten-cell-unit (TCUs)] in
order of declining geographic scale (de Castro et al., 2004; Dongus
et al., 2007). The TCU normally comprises between 10 and 100
houses or compounds with an elected leader who represents the
residents (Dongus et al., 2007). While the municipal and city coun-
cils of Dar es Salaam do implement a numbering system for houses
in the region, this is only applied to formally planned settlements
and very few people know the identification number of the house
that they live in. In the absence of a widely used system of neigh-
bourhood names and house numbers or postal codes, similar to
those which are used in other parts of the world as a spatial refer-
ence system for residential locations, TCUs are attractive as a geo-

graphic frame of reference and have already proven useful as sub-
divisions for implementing and managing malaria surveillance and
control in this city (Chaki et al., 2011, 2012; Dongus et al., 2007,
2011). However, patient registries of health facilities in Tanzania
currently only record residential home location down to the neigh-
bourhood level comprising an average of 70 TCUs each.
Therefore, in order to be able to assign patient information to a res-
idential location at much finer spatial resolution, the name of the
patient’s home TCU leader was added to the information recorded
in the health facility registry in the context of this study.

In Tanzania, there are five levels of service in the public health
care system, but only three are managed under the Dar es Salaam
City Medical Office of Health (Mtasiwa et al., 2003):
districts/municipalities (each with a municipal hospital), divisions
(each with a health centre) and wards (with dispensaries and affil-
iated clinics). There is one public health facility per ward (called
dispensary), which provides service at a lower cost than private
facilities (Mamdani and Bangser, 2004). This study was conducted
at Buguruni Health Centre (BHC), a division-level facility located
close to the boundary between the Buguruni and Vingunguti wards
(Figure 2). BHC was selected because its malaria rapid diagnostic
test (mRDT) procedures had been quality-controlled by previous
research projects indicating adequate quality of the services pro-
vided according to the national guidelines for management of fever
and malaria cases (United Republic of Tanzania, 2006). Initial
examination of the laboratory registry book revealed that the BHC

                   Article

Figure 1. Location of study area in Dar es Salaam, Tanzania. Overview map of Africa (A); overview map of Tanzania (B); overview map
of Dar es Salaam Region, indicating the location of the study area (C) (Buguruni and Vingunguti wards, see Figure 2).
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served patients across all of Dar es Salaam. The majority of
patients, however, came from Buguruni (29.8%) or Vingunguti
wards (25.2%). For demonstration purposes, this pilot study exclu-
sively considered patients coming from these two wards. All indi-
viduals tested for malaria with an mRDT and treated according to
the national guidelines for management of fever and malaria cases
were eligible for inclusion in this study. The two study wards have
a combined total area of 7.9 km2 and are subdivided into a total of
eight neighbourhoods (Kisiwani, Mnyamani, Malapa, Madenge,

Kombo, Mtambani, Mtakuja and Miembeni) (Figure 2), with a
total of 177,531 inhabitants based on 2012 national census data
(The United Republic of Tanzania, 2013). Both wards are charac-
terised by high housing density, largely unplanned settlements, low
socio-economic background and relatively small TCU sizes (on
average approximately 100×100 m) (Dongus et al., 2007). They
are bordered by industrial areas to the south, and one of the largest
river valleys cutting through Dar es Salaam (Msimbazi River) to
the north. 
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Figure 2. Spatial distribution of malaria diagnostic positivity rate (i.e. the proportion of patients tested for malaria that had a positive test
result) in two wards of Dar es Salaam (Buguruni and Vingunguti). The size of the dots is proportional to the number of tested patients. The
locations of the dots refer to residential housing cluster (TCU) locations, represented by the location of the TCU leader’s house. The spatial
cluster (P=0.047) of high malaria diagnostic positivity rate (based on FleXScan analysis) is marked in green. All results based on data from
patients tested for malaria at Buguruni Health Centre (BHC) from June 2012 to January 2013. This figure was created using ArcGIS® soft-
ware by Esri (www.esri.com). ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright ©Esri.
All rights reserved. Source of basemap (World Imagery): Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community.
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Data collection
Personal and clinical data, mRDT (MAL-Pf®, ICT

Diagnostics, Cape Town, South Africa) using histidine-rich protein
II (HRP-II) results of individual patients attending the BHC, as
well as the names of their local TCU leaders at their home resi-
dence were recorded routinely in the BHC laboratory registry
books from June 2012 to January 2013. 

Residential TCU locations were traced by comparing TCU lead-
ers’ names provided by patients to a list provided by the local govern-
ment ward executive office where the details are recorded, regulated
and regularly updated. Ward-level local government staff was con-
sulted to solve unclear cases. Due to numerous, recent changes of
TCU leaders resulting from routine electoral political processes, the
previously described TCU maps and supporting databases (Dongus et
al., 2007, 2011) had to be updated. Validating the exact TCU bound-
aries and re-mapping them where changes had occurred would have
been too labour-intensive. The much more affordable and practical
approach taken, which nevertheless allowed for the same level of
spatial precision as TCU boundary maps, was to geolocate the resi-
dences of all TCU leaders in Buguruni and Vingunguti that were suc-
cessfully identified from patient records at BHC, using a hand-held
Global Positioning System (GPS) receiver (eTrex 10; Garmin,
Olathe, KS, USA), at a positional precision of ≤5 m. 

Data analysis
Patient data were anonymised during the process of data extrac-

tion from the registry books to specific data collection sheets. Data
sheets were checked for consistency and accuracy and entered into a
Microsoft Excel database. Data were crosschecked against BHC reg-
istry records, aggregated by TCU, and linked to GPS coordinates of
the respective TCU leaders’ residential locations with unique enumer-
ation codes for each TCU. The resulting geo-database was then inte-
grated into Geographic Information Systems (GIS) ArcGIS 10.1 soft-
ware (ESRI, Redland, CA, USA). This enabled the visualisation of
the spatial distribution of positive and negative test results of patients,
and the diagnostic positivity rate, i.e. the number of patients in each
TCU who tested positive for Plasmodium falciparum malaria divided
by the total number of patients tested in this TCU. Global Moran’s I
statistics in ArcGIS were used to test for spatial autocorrelation in the
diagnostic positivity rates found in the different residential locations
(Moran, 1948). Spatial clustering was assessed on ward, neighbour-

hood and TCU levels. For wards and neighbourhoods, generalised
linear modelling analyses (binomial distribution) were performed
with R software (Rx642.15.2) with prevalence (i.e. the proportion of
patients tested for malaria that had a positive test result) as the depen-
dent variable and neighbourhoods and wards as categorical indepen-
dent variables. At the TCU level, spatial clustering of high prevalence
rates was assessed by performing spatial scan statistics with
FleXScan open source software (v3.1.2) (Takahashi et al., 2008,
2013; Tango and Takahashi, 2005). FleXScan performs a flexibly
shaped spatial scan statistic that can detect irregularly shaped clusters.
The analysis parameters were set to purely spatial analysis, scanning
for clusters with high prevalence rates using models with a binomial
distribution and logit link function for this binary diagnostic status
outcome and weighted according to the total number of patients test-
ed and traced in a given TCU. The matrix definition file was created
based on a spatial weights matrix generated in ArcGIS and the max-
imum spatial cluster size was set to 10 TCUs. Spatial relationships
were set to Delaunay Triangulation with Euclidian distance. TCUs
identified as being part of a spatial cluster were visualised with
ArcGIS.

Results 
Among 4,378 outpatients tested for the presence of P. falciparum

malaria infections at BHC between June 2012 and January 2013,
9.1% (400/4378) tested positive. Over half (55.0%; 2407/4378) of all
patients tested for malaria reported that they were residents of
Buguruni and Vingunguti wards, with 13.5% (325/2407) out of these
testing positive. The diagnostic positivity rate was much lower
(3.8%; 75/1971) among the tested patients that came from other
wards of Dar es Salaam, including 17 patients who were residents of
other regions of Tanzania. Among all tested patients living in
Buguruni and Vingunguti wards, 80.6% (1941/2407) provided a local
leader’s name, and 46.6% (1121/2407) were successfully traced back
to their residential TCU (Figure 3). Surprisingly, while the home res-
idence TCU leader was unambiguously identified for 73.8%
(240/325) of the patients from the study wards who tested positive for
malaria, only 42.3% (881/2082) of those with a negative test result
were successfully traced. Accordingly, the diagnostic positivity rate
among the tested study ward residents who were successfully traced
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Table 1. Malaria test results per ward and neighbourhood, and results of logistic generalised linear models for comparing diagnostic
positivity rates of different wards and neighbourhoods.

Ward                       Neighbourhood   Tested patients (n)  Positive cases (n)       Diagnostic positivity   Coefficient     Z value        P

Buguruni                        Kisiwani                                        137                                       31                                             0.23                                   1                       na                na
                                         Mnyamani                                     302                                       71                                             0.24                            1.046436              0.185           0.853
                                         Malapa                                           48                                        13                                             0.27                            1.270042              0.623           0.533
                                         Madenge                                        88                                        17                                             0.19                            0.830415             -0.548          0.583
Vingunguti                      Mtambani                                     166                                       33                                             0.20                            0.848411             -0.583          0.560
                                         Mtakuja                                          87                                        23                                             0.26                            1.228827              0.649           0.516
                                         Miembeni                                      54                                         8                                              0.15                            0.594669             -1.197          0.231
                                         Kombo                                          239                                       44                                             0.18                            0.771545             -0.983          0.325
Buguruni                        All                                                   575                                      132                                            0.23                                   1                       na                na
Vingunguti                      All                                                   546                                      108                                            0.20                            0.827522             -1.295          0.195
Total                                                                                       1121                                     240                                            0.21                                                                                   
na, not available.
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was considerably higher (21.4%; 240/1121) than among untraced
patients living in the same wards (6.6%; 85/1286). The patients that
could not be traced had provided none, unclear or inaccurate informa-
tion regarding the names of their local leaders, wards, or neighbour-
hoods (Figure 3). Patients from a total of 411 TCUs were traced, cor-
responding to 57.3% of all TCUs in Buguruni and Vingunguti (717).
The numbers of traced patients were similar in Buguruni (n=576) and
Vingunguti (n=546), and the highest number of patients came from
the neighbourhood where the BHC is located (Table 1). No spatial
patterns were obvious at the ward or neighbourhood levels, as no sig-
nificant differences between diagnostic positivity rates were found
when the data were aggregated at these coarser scales (Table 1).
However, testing for spatial autocorrelation of diagnostic positivity
rates in the different residential locations indicated a clustered pattern
at the TCU level (z-score=2.23, P=0.026).

Cluster analysis with spatial scan statistics based on the spatial
distribution of malaria diagnostic positivity rate identified one
small cluster (P=0.047) of high-infection rates (Figure 2) consist-
ing of only four TCUs within 100 m of each other, where 100% of
tested patients (seven out of seven) had positive test results. 

The total cost for eligible patients to be traced back to their
area of residence over a period of eight months was US$ 10.2 per
individual, comprising all personnel and transport costs for con-
ducting this study. The additional workload for laboratory techni-
cians resulting from this study was observed to be readily manage-
able and did not appreciably affect the routine daily activities of
the laboratory staff who filled out >90% of the forms correctly.

Discussion
Despite the known limitations of routine health facility data in

terms of representativeness and completeness (Rowe et al., 2009;
Tornheim et al., 2010), this exploratory study indicates that routine
patient records allow mapping the spatial distribution and hetero-
geneities of malaria infection rates at high levels of spatial detail
(Figure 2) for every second patient tested for malaria at a health
facility. This can be achieved at an affordable cost by adding a sim-
ple and widely used fine-scale geographic or administrative point of
reference to the health facility patient register – in this case we added
the name of the patient’s local leader that is generally well known in
the community. In contrast to previous studies that predicted fine-
scale risk by fitting statistical models to aggregated health facility
catchment data (Sturrock et al., 2014) or by actively tracing all
patients to their homes (Bejon et al., 2014; Ernst et al., 2006), our
approach demonstrates that comparably fine spatial resolutions can
be derived from passively collected routine case data. Indeed, cluster
analysis with spatial scan statistics identified one cluster of high
diagnostic positivity that had a diameter of only 100 m. 

This small-scale pilot study, and indeed the overall approach
taken, has considerable limitations and caveats that merit careful
consideration. The most obvious limitation was that 53.4% of all
tested patients could not be traced back to their residential areas.
This might be due to potential selection bias for locations with
more readily identifiable TCU leaders, which could possibly lead
to an overestimation or underestimation of the actual malaria
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Figure 3. Number of patients sampled at Buguruni Health Centre (BHC), and patients’ flow with regard to number of patients who
were successfully traced back to their residential location.
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infection burden. The largest potential opportunity for optimising
this approach therefore probably lies in improving rates of success-
ful patient tracing. Note, however, that patient tracing may be more
difficult in rural areas with more scattered populations. Indeed,
only 27% of patients were successfully traced by a very similar
study conducted in rural Kenya (Stresman et al., 2014). A very suc-
cessful example with household traceability of up to 100% is work
performed in Solomon Islands and Vanuatu, where a comparable
spatial resolution was also achieved based on routinely collected
data, including successful integration in an automated GIS plat-
form for identifying areas for targeted response (Kelly et al.,
2013). However, the high traceability was only possible by geo-
referencing all households (>10,000) in the study area beforehand,
which might be more a suitable approach in the elimination con-
text of these Pacific Islands compared to fast growing megacities
such as Dar es Salaam.

However, perhaps the most important caveat to this pilot study
is the clear bias towards successful tracing of malaria-positive
cases, compared to malaria-negative cases. This discrepancy is sur-
prising, considering that residential information of the patients was
recorded before the patients were tested, but it seems likely that it
may have arisen from the understandably greater enthusiasm, pri-
ority and effort investment for identifying TCU leaders of patients
known to be malaria-infected. The larger number of malaria-nega-
tive patients may well have been mistakenly perceived as less
interesting to those tasked with mapping the malaria risk, who may
not have fully appreciated the statistical necessity to treat malaria-
positive and malaria-negative patients identically. It will thus be
crucial for future studies to minimise the risk of bias in the record-
ing procedure and to blind personnel responsible for patient tracing
to the diagnostic outcome of the patients. Furthermore, in order to
maximise cost-effectiveness and minimise disease-specific biases,
future studies should ideally map several spatially heterogeneous
diseases in an integrated manner. It would be essential for further
applications of this approach to also record, assess and account for
the effect of patient age and the associated immunity level (Bejon
et al., 2014; Bisanzio et al., 2015; Yeshiwondim et al., 2009). In
the case of Dar es Salaam though, the risk of detectable malaria
infection appears to be essentially equivalent across all age groups,
following the strongly reduced transmission over the last several
years that resulted in loss of exposure-acquired immunity
(Msellemu et al., 2016).

Furthermore, the modest scale of this pilot study also repre-
sents a clear limitation that needs to be addressed with much more
geographically and temporally extensive evaluations. Using only a
single public facility clearly limited the coverage and complete-
ness, so much larger scale and evaluation over longer terms will be
required to fully assess both the full power and fundamental limi-
tations of this strategy. Using this approach over longer periods of
time could also enable more robust assessment of spatial clustering
as well as capturing seasonality and other short- and long-term
temporal trends.

Future applications of this approach will need to cope with the
highly dynamic nature of local government political processes on
such fine scales. The identities of local government leaders, espe-
cially those of the TCUs, change frequently due to normal elec-
toral, political and demographic processes, so it is essential to reg-
ularly and routinely update TCU locations and leadership informa-

tion by frequently consulting with local authorities at ward and
neighbourhood levels or their equivalents in other settings. In this
pilot study, 42.8% (820/1941) of patients that provided a TCU
leader’s name could not be matched to a location because the name
they provided was either wrong or misspelt in such a way that nei-
ther automated nor manual matching was possible. A possible solu-
tion for this might be to provide health facilities with up-to-date
lists of all municipalities, wards, neighbourhoods and TCU lead-
ers, from which patients can choose their respective residential
location. Using electronic devices such as tablets or mobile phones
for data collection might be very beneficial in this respect, and also
in terms of facilitating timely reporting and responses.

The techniques presented here can be extended to include pub-
lic and private health facilities at any given scale of catchment
area, and can be scaled up to other comparable low-income set-
tings with limited resources and no physical address system, wher-
ever a similar local government system exists. In Tanzania, TCUs
and their leaders have been established across the mainland and
similar fine-scale local government subdivisions, known as sheha,
also exist in the Zanzibar archipelago. In malaria-affected regions
elsewhere, where the existing administrative structures do not
allow for simple replication of this approach, potential alternatives
to using the names of local leaders might be self-reported land-
marks such as nearby schools, health facilities, churches or
mosques (Stresman et al., 2014). Alternatively, a map-book
approach, based on printouts of aerial imagery, could be applied
but this may well increase cost and burden upon health facilities
that are already overstretched, because it requires some time
investment in explanation by health facility staff (MacPherson et
al., 2013). While the clear shortcoming of both these alternatives
is their much coarser spatial resolution, their potential lies in the
relatively large patients numbers that can be traced (MacPherson et
al., 2013; Stresman et al., 2014). 

In addition to the demonstrated functionality of this fine-scale
mapping procedure, a clear strength of this approach is that it is
affordable and practical because it does not require any active data
gathering other than maintaining up-to-date information about the
residential location and identities of elected local leaders. Other
than that, it relies entirely on routine health facility data which is
widely available across many countries with even the most basic
health services (Cohen et al., 2013). With regard to malaria control
interventions, the approach might have its largest potential when
integrated with a GIS-based surveillance system at the local,
provincial or national level to generate dynamic risk maps for
guiding targeted interventions in real time, thus contributing to
effective surveillance-response systems (Tambo et al., 2014; Zhou
et al., 2013). 

Conclusions
Recording simple points of reference that community members

can readily relate to during routine health facility visits – in this
case the names of their local leaders – can be used for mapping
spatial heterogeneity in confirmed clinical malaria rates at remark-
ably fine geographic scales. Such passively collected routine clin-
ical data can be used to identify hotspots of elevated risk, offering
a feasible approach to targeting malaria control interventions under
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programmatic conditions. In contrast to traditional active surveil-
lance approaches, such as cross-sectional or incidence cohort sur-
veys, mapping the spatial distribution of malaria infection rates
using passively collected routine health facility data offers high
spatial resolution at an affordable cost. However, in order to tap the
full potential of this approach, optimising the success rate in trac-
ing patients and eliminating biases associated with diagnostic test
results will be necessary. Closing these methodological gaps could
result in a refined surveillance tool that has the potential to become
a scalable, integral, sustainable component of control programmes,
which can then target supplementary interventions to foci of ele-
vated risk.
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