70 research outputs found
Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis
SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.Objective. This clinical study was undertaken to compare the effectiveness of 2.5% sodium hypochlorite (NaOCl) and
0.12% chlorhexidine digluconate as irrigants in reducing the cultivable bacterial populations in infected root canals of
teeth with apical periodontitis.
Study design. According to stringent inclusion/exclusion criteria, 32 teeth with primary intraradicular infections and
chronic apical periodontitis were selected and followed in the study. Bacterial samples were taken at the baseline (S1)
and after chemomechanical preparation using either NaOCl (n 16) or chlorhexidine (n 16) as irrigants (S2).
Cultivable bacteria recovered from infected root canals at the 2 stages were counted. Isolates from S2 samples were
identified by means of 16S rRNA gene sequencing analysis.
Results. At S1, all canals were positive for bacteria, and the median number of bacteria per canal was 7.32 105 for
the NaOCl group and 8.5 105 for the chlorhexidine group. At S2, the median number of bacteria in canals irrigated
with NaOCl and chlorhexidine was 2.35 103 and 2 102, respectively. Six of 16 (37.5%) canals from the NaOCl
group and 8 of 16 (50%) canals from the chlorhexidine group yielded negative cultures. Chemomechanical
preparation using either solution substantially reduced the number of cultivable bacteria in the canals. No significant
difference was observed between the NaOCl and chlorhexidine groups with regard to the number of cases yielding
negative cultures (P .72) or quantitative bacterial reduction (P .609). The groups irrigated with NaOCl or
chlorhexidine showed a mean number of 1.3 and 1.9 cultivable species per canal, respectively. The great majority of
isolates in S2 were from gram-positive bacteria, with streptococci as the most prevalent taxa.
Conclusions. The present findings revealed no significant difference when comparing the antibacterial effects of 2.5%
NaOCl and 0.12% chlorhexidine used as irrigants during the treatment of infected canal
A Community Study of Factors Related to Poorly Controlled Asthma among Brazilian Urban Children
BACKGROUND: Asthma constitutes a serious public health problem in many regions of the world, including the city of Salvador, State of Bahia-Brazil. The purpose of this study was to analyse the factors associated with poor asthma control. METHODOLOGY/PRINCIPAL FINDINGS: Two definitions were used for asthma: 1) wheezing in the last 12 months; 2) wheezing in the last 12 months plus other asthma symptoms or asthma diagnosis ever. The definition of poorly controlled asthma was: at least one reported hospitalisation due to asthma and/or high frequency of symptoms, in the last year. Children with poorly controlled asthma (N = 187/374) were compared with wheezing children with controlled asthma regarding age, gender, atopy, parental asthma, rhinitis, eczema, exposure to second hand tobacco smoke, presence of moulds, pets and pests in the house, helminth infections and body mass index. Crude and logistic regression adjusted odds ratios were used as measures of association. There was a higher proportion of poorly controlled asthma among children with eczema (OR = 1.55; 95% CI 1.02; 2.37). The strength of the association was greater among children with eczema and rhinitis (42.6%, 53.4% and 57.7%, respectively, in children who had no rhinitis nor eczema, had only one of those, and had both (p = 0.02 for trend test). The presence of mould in the houses was inversely associated with poorly controlled asthma (OR = 0.54; 95% CI 0.34; 0.87). CONCLUSIONS/SIGNIFICANCE: Our results indicate an association between eczema and poor asthma control in this environment, but emphasize the role of various other individual and environmental factors as determinants of poor control
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
- …