53 research outputs found

    The Potential of Visible Spectroscopy as a Tool for the In-Line Monitoring of Lignin Methylolation

    Get PDF
    Out of the 50 to 70 million tons of lignin that are produced annually, only 1 to 2% are used for value-added products. Currently, 90% of the total market of this compound corresponds to lignosulphonates (LS). The most successful industrial attempts to use lignin for wood adhesives rely on using it as a partial substitute in phenolformaldehyde or ureaformaldehyde resins. However, lignins aromatic ring presents a low number of reactive sites. Several methods have been proposed to improve its reactivity, such as prior methylolation with formaldehyde. Off-line methods are commonly applied to monitor this reactions progress, but this introduces a significant delay in the analysis. This study proposes a new method for in-line monitoring of the methylolation reaction using visible spectroscopy. In order to monitor the reaction progress, principal component analysis was applied to the spectra, and the obtained scores were analyzed. When these results were plotted against those obtained by the off-line methods, a satisfactory regression was obtained at 50 °C (R2 = 0.97) and 60 °C (R2 = 0.98) for two different LS samples. Therefore, it was concluded that visible spectroscopy is a promising technique for studying lignin methylolation.</jats:p

    Erratum: Borges, I., et al. Exposure of Smaller and Oxidized Graphene on Polyurethane Surface Improves Its Antimicrobial Performance. Nanomaterials 2020, 10, 349

    Get PDF
    The authors wish to make the following corrections to this paper [1]: Funding: This research was funded by Fundação para a Ciência e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) for Projects POCI-01-0145-FEDER-006939, POCI-01-0145-FEDER-007274, PTDC/CTM-BIO/4033/2014, and NORTE-01-0145-FEDER-000012, and projects UID/BIM/04293/2019—i3S and UIDB/00511/2020—LEPABE, funded by national funds through FCT/MCTES (PIDDAC).The authors wish to make the following corrections to this paper [1]: Funding: This research was funded by Fundação para a Ciência e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) for Projects POCI-01-0145-FEDER-006939, POCI-01-0145-FEDER-007274, PTDC/CTM-BIO/4033/2014, and NORTE-01-0145-FEDER-000012, and projects UID/BIM/04293/2019—i3S and UIDB/00511/2020—LEPABE, funded by national funds through FCT/MCTES (PIDDAC). This research was funded by Funda??o para a Ci?ncia e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) for Projects POCI-01-0145-FEDER-006939, POCI-01-0145-FEDER-007274, PTDC/CTM-BIO/4033/2014, and NORTE-01-0145-FEDER-000012, and projects UID/BIM/04293/2019?i3S and UIDB/00511/2020?LEPABE, funded by national funds through FCT/MCTES (PIDDAC)

    High-yield production of nano-lateral size graphene oxide by high-power ultrasonication

    Get PDF
    Nanographene oxide (GOn) constitutes a nanomaterial of high value in the biomedical field. However, large scale production of highly stable aqueous dispersions of GOn is yet to be achieved. In this work, we explored high-power ultrasonication as a method to reduce particle size of GO and characterized the impact of the process on the physicochemical properties of the material. GOn was obtained with lateral dimensions of 99 ± 43 nm and surface charge of -39.9 ± 2.2 mV. High-power ultrasonication enabled an improvement of stability features, particularly by resulting in a decrease of the average particle size, as well as zeta potential, in comparison to GO obtained by low-power exfoliation and centrifugation (287 ± 139 nm; -29.7 ± 1.2 mV). Remarkably, GOn aqueous dispersions were stable for up to 6 months of shelf-time, with a global process yield of 74%. This novel method enabled the production of large volumes of highly concentrated (7.5 mg mL-1) GOn aqueous dispersions. Chemical characterization of GOn allowed the identification of characteristic oxygen functional groups, supporting high-power ultrasonication as a fast, efficient, and productive process for reducing GO lateral size, while maintaining the material’s chemical features.This work was financed by FEDER funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE. Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI—Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus—Individual Call—[CEECIND/03908/2017]

    Graphene oxide topical administration: Skin permeability studies

    Get PDF
    Nanostructured carriers have been widely used in pharmaceutical formulations for der-matological treatment. They offer targeted drug delivery, sustained release, improved biostability, and low toxicity, usually presenting advantages over conventional formulations. Due to its large surface area, small size and photothermal properties, graphene oxide (GO) has the potential to be used for such applications. Nanographene oxide (GOn) presented average sizes of 197.6 ± 11.8 nm, and a surface charge of -39.4 ± 1.8 mV, being stable in water for over 6 months. 55.5% of the mass of GOn dispersion (at a concentration of 1000 µg mL-1 ) permeated the skin after 6 h of exposure. GOn dispersions have been shown to absorb near-infrared radiation, reaching temperatures up to 45.7¿ C, within mild the photothermal therapy temperature range. Furthermore, GOn in amounts superior to those which could permeate the skin were shown not to affect human skin fibroblasts (HFF-1) morphology or viability, after 24 h of incubation. Due to its large size, no skin permeation was observed for graphite particles in aqueous dispersions stabilized with Pluronic P-123 (Gt–P-123). Altogether, for the first time, Gon’s potential as a topic administration agent and for delivery of photothermal therapy has been demonstrated.This work was financed by FEDER funds through the COMPETE 2020–Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding-UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy–LEPABE. Additional funding included FCT/MCTES in the framework of the project “Institute for Research and Innovation in Health Sciences” (UID/BIM/04293/2019). Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI–Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus-Individual Call–[CEECIND/03908/2017]. Soraia Pinto (SFRH/BD/144719/2019) would like to thank FCT, Portugal for financial support

    Pulegone and Eugenol Oral Supplementation in Laboratory Animals: Results from Acute and Chronic Studies

    Get PDF
    Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)
    corecore