17 research outputs found

    Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe.

    Get PDF
    Aim:Forest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors). Location:Temperate forests in Europe. Time period:2017-2018. Major taxa studied:Woody plants. Methods:We combined data from a microclimate sensor network with weather-station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures. Results:The maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position. Main conclusions:Forest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate-species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land-use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories

    The functional role of temperate forest understorey vegetation in a changing world

    Get PDF
    Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change

    Combining biodiversity resurveys across regions to advance global change research

    Get PDF
    More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research

    Evaluating structural and compositional canopy characteristics to predict the light‐demand signature of the forest understorey in mixed, semi‐natural temperate forests

    Get PDF
    Questions: Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy‐to‐measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light‐demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [“EIVLIGHT”] and the proportion of “forest specialists” [“%FS”] within the plots). Furthermore, we asked whether accounting for the shade‐casting ability of individual canopy species could improve predictions of EIVLIGHT and %FS. Location: A total of 192 study plots from nineteen temperate forest regions across Europe. Methods: In each plot, we measured stand basal area (all stems >7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the percentage cover of all plant species in the herb (7 m). We used linear mixed‐effect models to assess the relationships between basal area, canopy cover and canopy closure. We performed model comparisons, based on R2 and the Akaike Information Criterion (AIC), to assess which stand characteristics can predict EIVLIGHT and %FS best, and to assess whether canopy shade‐casting ability can significantly improve model fit. Results: Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For both EIVLIGHT and %FS, canopy cover was the best predictor. Including the share of high‐shade‐casting species in both the basal‐area and cover models improved the model fit for EIVLIGHT, but not for %FS. Conclusions: The typically expected relationships between basal area, canopy cover and canopy closure were weak or even absent in structurally complex mixed forests. In these forests, easy‐to‐measure structural canopy characteristics were poor predictors of the understorey light‐demand signature, but accounting for compositional characteristics could improve predictions

    Global environmental change effects on ecosystems: The importance of land-use legacies

    No full text
    One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions.Fil: Perring, Michael P.. University of Western Australia; Australia. University of Ghent; BĂ©lgicaFil: De Frenne, Pieter. University of Ghent; BĂ©lgicaFil: Baeten, Lander. University of Ghent; BĂ©lgicaFil: Maes, Sybryn L.. University of Ghent; BĂ©lgicaFil: Depauw, Leen. University of Ghent; BĂ©lgicaFil: Blondeel, Haben. University of Ghent; BĂ©lgicaFil: CarĂłn, MarĂ­a Mercedes. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de AgronomĂ­a. Laboratorio de Investigaciones BotĂĄnicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Verheyen, Kris. University of Ghent; BĂ©lgic

    Environmental drivers interactively affect individual tree growth across temperate European forests

    No full text
    Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.</p

    Drivers of above-ground understorey biomass and nutrient stocks in temperate deciduous forests

    No full text
    The understorey in temperate forests can play an important functional role, depending on its biomass and functional characteristics. While it is known that local soil and stand characteristics largely determine the biomass of the understorey, less is known about the role of global change. Global change can directly affect understorey biomass, but also indirectly by modifying the overstorey, local resource availability and growing conditions at the forest floor. In this observational study across Europe, we aim at disentangling the impact of global-change drivers on understorey biomass and nutrient stocks, from the impact of overstorey characteristics and local site conditions. Using piecewise structural equation modelling, we determine the main drivers of understorey biomass and nutrient stocks in these forests and examine potential direct and indirect effects of global-change drivers. Tree cover, tree litter quality and differences in former land use were the main drivers of understorey biomass and nutrient stocks, via their influence on understorey light and nitrogen availability and soil acidity. Other global-change drivers, including climate and nitrogen deposition, had similar indirect effects, but these were either weak or only affecting nutrient concentrations, not stocks. Synthesis. We found that direct effects of global-change drivers on understorey biomass and nutrient stocks were absent. The indirect effects of global change, through influencing resource availability and growing conditions at the forest floor, were found to be less important than the effects of overstorey cover and composition. These results suggest that understorey biomass and nutrient stocks might respond less to global change in the presence of a dense overstorey, highlighting the buffering role of the overstorey in temperate forests.</p

    Predicting trajectories of temperate forest understorey vegetation responses to global change

    No full text
    Predicting forest understorey community responses to global change and forest management is vital given the importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has gone into disentangling the impact of global change on understorey communities, scarcity of information on site-specific environmental drivers across large temporal-spatial scales has limited our ability to predict global change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and predict site-specific responses of four understorey properties to global change. We applied our final GBR models at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the projected trajectories. Our results showed that the RÂČ value of the four final GBR models on the independent testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the Austrian forest sites showed that site-specific understorey responses to near-future climate warming were expected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed canopy, the understorey community was predicted to shift towards more woody species and more forest specialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N pollution pressures, our presented GBR models allow the prediction of trajectories of understorey vegetation responses to global change and management interventions at specific forest sites. Such projections could aid forest management in addressing challenges posed by global change

    Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests

    No full text
    International audienceQuestions Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light-demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [''EIVLIGHT''] and the proportion of ``forest specialists'' [''%FS''] within the plots). Furthermore, we asked whether accounting for the shade-casting ability of individual canopy species could improve predictions ofEIV(LIGHT)and %FS. Location A total of 192 study plots from nineteen temperate forest regions across Europe. Methods In each plot, we measured stand basal area (all stems >7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the percentage cover of all plant species in the herb (7 m). We used linear mixed-effect models to assess the relationships between basal area, canopy cover and canopy closure. We performed model comparisons, based onR(2)and the Akaike Information Criterion (AIC), to assess which stand characteristics can predictEIV(LIGHT)and %FSbest, and to assess whether canopy shade-casting ability can significantly improve model fit. Results Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For bothEIV(LIGHT)and %FS, canopy cover was the best predictor. Including the share of high-shade-casting species in both the basal-area and cover models improved the model fit forEIV(LIGHT), but not for %FS. Conclusions The typically expected relationships between basal area, canopy cover and canopy closure were weak or even absent in structurally complex mixed forests. In these forests, easy-to-measure structural canopy characteristics were poor predictors of the understorey light-demand signature, but accounting for compositional characteristics could improve predictions

    Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities

    No full text
    International audienceA central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land-use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land-use history, distinguishing ancient and recent (i.e. post-agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot-scale. Land-use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land-use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land-use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land-use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi-natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer
    corecore