59 research outputs found
Low spin wave damping in the insulating chiral magnet CuOSeO
Chiral magnets with topologically nontrivial spin order such as Skyrmions
have generated enormous interest in both fundamental and applied sciences. We
report broadband microwave spectroscopy performed on the insulating chiral
ferrimagnet CuOSeO. For the damping of magnetization dynamics we
find a remarkably small Gilbert damping parameter of about at
5 K. This value is only a factor of 4 larger than the one reported for the best
insulating ferrimagnet yttrium iron garnet. We detect a series of sharp
resonances and attribute them to confined spin waves in the mm-sized samples.
Considering the small damping, insulating chiral magnets turn out to be
promising candidates when exploring non-collinear spin structures for high
frequency applications.Comment: 5 pages, 5 figures, and supplementary materia
Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior
An important challenge in the field of dental and orthopedic implantology is the preparation of implant coatings with bioactive functions that feature a high mechanical stability and at the same time mimic structural and compositional properties of native bone for a better bone ingrowth. This study investigates the influence of magnesium addition to zirconia-calcium phosphate coatings. The mixed coatings were prepared with varying additions of either magnesium oxide or magnesium fluoride to yttria-stabilized zirconia and hydroxyapatite. The coatings were deposited on zirconia discs and screw implants by wet powder spraying. Microstructure studies confirm a porous coating with similar roughness and firm adhesion not hampered by the coating composition. The coating morphology, mechanical flexural strength and calcium dissolution showed a magnesium content-dependent effect. Moreover, the in vitro results obtained with human osteoblasts reveal an improved biological performance caused by the presence of Mg2+ ions. The magnesiumcontaining coatings exhibited better cell proliferation and differentiation in comparison to pure zirconia-calcium phosphate coatings. In conclusion, these results demonstrate that magnesium addition increases the bioactivity potential of zirconia-calcium phosphate coatings and is thus a highly suitable candidate for bone implant coatings
Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm
We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits
Spin waves with large decay length and few 100 nm wavelengths in thin yttrium iron garnet grown at the wafer scale
Using conventional coplanar waveguides (CPWs), we excited spin waves with a wavelength λ down to 310 nm in a 200 nm thin yttrium iron garnet film grown by liquid phase epitaxy. Spin-wave transmission was detected between CPWs that we separated by up to 2 mm. For magnetostatic surface spin waves, we found a large nonreciprocity of 0.9 and a high group velocity vg of up to 5.4 km/s. The extracted decay length ld amounted to 0.86 mm. Small λ, high vg, and large ld are key figures of merit when aiming at non-charged based signal transmission and logic devices with spin waves
Spin waves with large decay length and few 100 nm wavelengths in thin yttrium iron garnet grown at the wafer scale
Time for a quick word? The striking benefits of training speed and accuracy of word retrieval in post-stroke aphasia
One-third of stroke survivors experience deficits in word retrieval as a core characteristic of their aphasia, which is frustrating, socially limiting and disabling for their professional and everyday lives. The, as yet, undiscovered ‘holy grail’ of clinical practice is to establish a treatment that not only improves item naming, but also generalizes to patients’ connected speech. Speech production in healthy participants is a remarkable feat of cognitive processing being both rapid (at least 120 words per minute) and accurate (∼one error per 1000 words). Accordingly, we tested the hypothesis that word-finding treatment will only be successful and generalize to connected speech if word retrieval is both accurate and quick. This study compared a novel combined speed- and accuracy-focused intervention—‘repeated, increasingly-speeded production’—to standard accuracy-focused treatment. Both treatments were evaluated for naming, connected speech outcomes, and related to participants’ neuropsychological and lesion profiles. Twenty participants with post-stroke chronic aphasia of varying severity and subtype took part in 12 computer-based treatment sessions over 6 weeks. Four carefully matched word sets were randomly allocated either to the speed- and accuracy-focused treatment, standard accuracy-only treatment, or untreated (two control sets). In the standard treatment, sound-based naming cues facilitated naming accuracy. The speed- and accuracy-focused treatment encouraged naming to become gradually quicker, aiming towards the naming time of age-matched controls. The novel treatment was significantly more effective in improving and maintaining picture naming accuracy and speed (reduced latencies). Generalization of treated vocabulary to connected speech was significantly increased for all items relative to the baseline. The speed- and accuracy-focused treatment generated substantial and significantly greater deployment of targeted items in connected speech. These gains were maintained at 1-month post-intervention. There was a significant negative correlation for the speed- and accuracy-focused treatment between the patients’ phonological scores and the magnitude of the therapy effect, which may have reflected the fact that the substantial beneficial effect of the novel treatment generated a ceiling effect in the milder patients. Maintenance of the speed- and accuracy-treatment effect correlated positively with executive skills. The neural correlate analyses revealed that participants with the greatest damage to the posterior superior temporal gyrus extending into the white matter of the inferior longitudinal fasciculus, showed the greatest speed- and accuracy treatment benefit. The novel treatment was well tolerated by participants across the range of severity and aphasia subtype, indicating that this type of intervention has considerable clinical utility and broad applicability
Eigenschaften von Titannitrid und Titan-Wolfram als Diffusionsbarrieren fuer die hochintegrierte Mikroelektronik
Available from TIB Hannover: DW 9473 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
- …
