43 research outputs found

    Community Change within a Caribbean Coral Reef Marine Protected Area following Two Decades of Local Management

    Get PDF
    Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.Funding was provided by the Saba Conservation Foundation ((SCF), King Abdullah University of Science and Technology, The Australian National University and Australian Research Council. The funders had no role in study design and analysis, decision to publish, or preparation of the manuscript. Staff of the SCF were involved in data collection

    Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes

    No full text
    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax ) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax . For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax . For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax , which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies.MEA was partially supported by National Science Foundation Division of Environmental Biology (NSF DEB) grant 0842397 (http://www.nsf.gov/div/ index.jsp?div = DEB). CJF was partially supported by the Australian Research Council (http://www.arc.gov.au/)

    Co-management of culturally important species:A tool to promote biodiversity conservation and human well-being

    Get PDF
    Co-management has been advocated as an effective tool to achieve natural resource conservation worldwide. Yet, the potential of co-management arrangements can fail to be realized when there is insufficient local engagement. In this perspective paper, we argue that co-management schemes focusing on culturally important species (CIS) can help overcome this issue by engaging local people's interest. To develop this theory, we explore published data on the outcomes of two management schemes, both encompassing multiple independent initiatives, to discuss CIS-management effects and benefits. We also show a compilation of CIS examples throughout the world and discuss the potential of CIS-management to reach a global audience. Based on these data, we argue that CIS-management can be an effective tool to reconcile the often intractable goals of biodiversity conservation and human welfare

    The contribution of macroalgae-associated fishes to small-scale tropical reef fisheries

    Get PDF
    Macroalgae-dominated reefs are a prominent habitat in tropical seascapes that support a diversity of fishes, including fishery target species. To what extent, then, do macroalgal habitats contribute to small-scale tropical reef fisheries? To address this question we: (1) Quantified the macroalgae-associated fish component in catches from 133 small-scale fisheries, (2) Compared life-history traits relevant to fishing (e.g. growth, longevity) in macroalgal and coral-associated fishes, (3) Examined how macroalgae-associated species can influence catch diversity, trophic level and vulnerability and (4) Explored how tropical fisheries change with the expansion of macroalgal habitats using a case study of fishery-independent data for Seychelles. Fish that utilised macroalgal habitats comprise 24% of the catch, but very few fished species relied entirely on macroalgal or coral habitats post-settlement. Macroalgal and coral-associated fishes had similar life-history traits, although vulnerability to fishing declined with increasing contribution of macroalgae association to the catch, whilst mean trophic level and diversity peaked when macroalgal-associated fish accounted for 20%-30% of catches. The Seychelles case study revealed similar total fish biomass on macroalgal and coral reefs, although the biomass of primary target species increased as macroalgae cover expanded. Our findings reinforce that multiple habitat types are needed to support tropical fishery stability and sustainability. Whilst coral habitats have been the focus of tropical fisheries management, we show the potential for macroalgae-associated fish to support catch size and diversity in ways that reduce vulnerability to overfishing. This is pertinent to seascapes where repeated disturbances are facilitating the replacement of coral reef with macroalgal habitats

    Community change within a Caribbean coral reef Marine Protected Area following two decades of local management

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e54069, doi:10.1371/journal.pone.0054069.Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.Funding was provided by the Saba Conservation Foundation ((SCF), King Abdullah University of Science and Technology, The Australian National University and Australian Research Council

    A unified meta‐ecosystem dynamics model: Integrating herbivore‐plant subwebs with the intermittent upwelling hypothesis

    No full text
    Abstract Determining the relative influence of biotic and abiotic processes in structuring communities at local to large spatial scales is best understood using a biogeographic comparative‐experimental approach. Using this approach, previous work suggests that intertidal community dynamics (top‐down and bottom‐up effects) vary unimodally along an upwelling‐based productivity gradient, termed the Intermittent Upwelling Hypothesis (IUH). Evidence consistent with the IUH comes from the sessile invertebrate/predator (SIP) subweb in certain rocky intertidal communities, but whether this pattern extends to macrophyte/herbivore (MH) subwebs is unknown. Here we ask: Are MH subwebs also structured as predicted by the IUH? What is the relative importance of herbivory and predation in structuring these communities? Under what conditions do ecological subsidies like nutrients or propagule production drive community dynamics? And are omnivorous interactions important? We hypothesize that MH subwebs are driven by a new construct, the Grazing‐Weakening Hypothesis (GWH), which states that MH interactions weaken monotonically with increasing nutrients, with strong (weak) herbivory and low (high) macrophyte productivity at low (high) nutrients. We explored local‐to‐large spatial scale dynamics of both subwebs using a biogeographic comparative‐experimental factorial field experiment testing joint and separate effects of herbivores and predators between two continents. Experiments at 10 sites ranging from persistent upwelling to persistent downwelling regimes ran for 26–29 months in Oregon and California, and New Zealand (NZ) South Island. For the MH subweb, results were consistent with the GWH: herbivory declined and macrophytes increased with increasing nutrients. As expected, results for the SIP subweb were consistent with the IUH: predator effect size was unimodally related to upwelling. Overall, herbivory explained more variation in community structure than did predation, especially in NZ. Omnivory was weak, sessile invertebrates outcompeted macrophytes, and ocean‐driven subsidies provided the basic template driving ecosystem dynamics. We propose a unified meta‐ecosystem dynamics model combining MH and SIP results: with increased upwelling, sessile invertebrates and underlying dynamics vary unimodally (as in the IUH), while herbivory decreases and macrophytes generally increase. While this model was based on research in temperate ecosystems varying in upwelling regime, its wider applicability remains to be tested

    Data from: Ecological release from aquatic predation is associated with the emergence of marine blenny fishes onto land

    No full text
    An ecological release from competition or predation is a frequent adaptive explanation for the colonization of novel environments, but empirical data are limited. On the island of Rarotonga, several blenny fish species appear to be in the process of colonizing land. Anecdotal observations have implied that aquatic predation is an important factor in prompting such amphibious fish behavior. We provide evidence supporting this hypothesis by demonstrating that amphibious blennies shift their abundance up and down the shoreline to remain above predatory fishes that periodically move into intertidal areas during high tide. A predation experiment using blenny mimics confirmed a high risk of aquatic predation for blennies, significantly higher than predation experienced on land. These data suggest that predation has played an active role in promoting terrestrial activity in amphibious blennies and provide a rare example of how ecological release from predation could drive the colonization of a novel environment

    Importance of soft canopy structure for labrid fish communities in estuarine mesohabitats

    No full text
    Hard structural complexity is widely recognised as important for assessing fish habitat quality, but our understanding of the importance of soft habitat microstructure for temperate marine fishes is less developed. We used best-subsets modelling of underwater surveys in sponge, soft coral, and macroalgae mesohabitats within a temperate estuary to assess what measures of soft habitat structure best predicted differences in wrasse (family: Labridae) fish community composition. We found that significant differences in the labrid fish community among and within mesohabitat types were best explained by a combination of percent canopy cover and soft canopy height, with increased canopy height being correlated with increased fish abundance and species richness. Sponge and macroalgae mesohabitats emerged as particularly important, but vulnerable habitats for a diversity of fishes unique to these mesohabitat types. Ultimately, mesohabitats with high percent canopy cover and height appear to be particularly valuable for supporting estuarine fish communities. Due to this importance, and the potential for decadal-scale recovery times within sponge canopies, we suggest patches with high-quality canopy structure warrant special protection from local threats, such as anchor and fishing damage

    Foraging in corallivorous butterflyfish varies with wave exposure

    No full text
    Understanding the foraging patterns of reef fishes is crucial for determining patterns of resource use and the sensitivity of species to environmental change. While changes in prey availability and interspecific competition have been linked to patterns of prey selection, body condition, and survival in coral reef fishes, rarely has the influence of abiotic environmental conditions on foraging been considered. We used underwater digital video to explore how prey availability and wave exposure influence the behavioural time budgets and prey selectivity of four species of obligate coral-feeding butterflyfishes. All four species displayed high selectivity towards live hard corals, both in terms of time invested and frequency of searching and feeding events. However, our novel analysis revealed that such selectivity was sensitive to wave exposure in some species, despite there being no significant differences in the availability of each prey category across exposures. In most cases, these obligate corallivores increased their selectivity towards their most favoured prey types at sites of high wave exposure. This suggests there are costs to foraging under different wave environments that can shape the foraging patterns of butterflyfishes in concert with other conditions such as prey availability, interspecific competition, and territoriality. Given that energy acquisition is crucial to the survival and fitness of fishes, we highlight how such environmental forcing of foraging behaviour may influence the ecological response of species to the ubiquitous and highly variable wave climates of shallow coral reefs
    corecore