217 research outputs found

    Performance of an Occam/transputer implementation of interval arithmetic

    Get PDF
    Rounded interval arithmetic is very easy to implement by means of directed rounding arithmetic operators. Such operators are available in the IEEE floating point arithmetic of the transputer. When a few small pieces of assembly language code are used to access the directed rounding operators, the four basic rounded interval arithmetic operators can easily be expressed in the programming language Occam.The performance of this implementation is assessed and it is shown that the time consuming part of the calculation are not the directed rounding floating point operations as one might have expected. Most of the time is spent with transport of operands to and from the on-chip floating point unit and the procedure call/parameter passing overhead. Based on this experience the implementation is improved. This implementation runs with 0.15 MIOPS (Million Interval Operations Per Second) or 0.30 MFLOPS on an example interval calculation proposed by Moore. Furthermore, it is demonstrated that an advanced interval language compiler may provide a performance of 0.30 MIOPS or 0.59 MFLOPS on this example calculation

    Singularities in minimax optimization of networks

    Get PDF

    Algorithms for worst-case tolerance optimization

    Get PDF

    Space Mapping With Adaptive Response Correction for Microwave Design Optimization

    Get PDF
    Output space mapping is a technique introduced to enhance the robustness of the space-mapping optimization process in case the space-mapped coarse model cannot provide sufficient matching with the fine model. The technique often works very well; however, in some cases it fails. Especially in the microwave area where the typical model response (e.g., 21) is a highly nonlinear function of the free parameter (e.g., frequency), the output spacemapping correction term may actually increase the mismatch between the surrogate and fine models for points other than the one at which the term was calculated, as in the surrogate model optimization process. In this paper, an adaptive response correction scheme is presented to work in conjunction with space-mapping optimization algorithms. This technique is designed to alleviate the difficulties of the standard output space mapping by adaptive adjustment of the response correction term according to the changes of the space-mapped coarse model response. Examples indicate the robustness of our approach
    corecore